

NCS-TT105W Беспроводной датчик температуры Руководство пользователя

Предупреждение

- 1. Пользователям запрещается самостоятельно разбирать и устанавливать плату беспроводного преобразователя температуры.
- Пользователи самостоятельно проверяют, соответствует ли напряжение батареи беспроводного преобразователя температуры требованиям к напряжению батареи, указанным в руководстве по эксплуатации.

Версия: V1.2

Отказ от ответственности

Содержимое данного руководства было проверено для подтверждения соответствия описанного аппаратного и программного обеспечения. Поскольку ошибки нельзя полностью исключить, невозможно гарантировать абсолютную согласованность. Однако мы будем периодически проверять данные в этом руководстве и вносить необходимые исправления в последующие версии. Любые предложения по улучшению приветствуются.

Корпорация Микрокибер 2016

Технические данные могут быть изменены.

Профиль компании

Корпорация Микрокибер является высокотехнологичным предприятием, инициированным и основанным Шэньянским институтом автоматизации Китайской академии наук, в основном занимающимся сетевой системой управления, промышленной связью и приборостроением, разработкой, производством и применением. Корпорация Microcyber осуществила ряд национальных научно-технических проектов, таких как Национальный крупный проект в области науки и техники, Национальная программа исследований и разработок в области высоких технологий (Программа 863), Проект разработки интеллектуального производственного оборудования Это И Т. Д. подразделение по строительству Национальный инженерно-исследовательский центр сетевых систем управления.

Корпорация Microcyber успешно разработала первый мастер-стек протоколов fieldbus, сертифицированный на международном уровне, первый прибор fieldbus, сертифицированный на национальном уровне, первый отечественный прибор безопасности, сертифицированный TÜV Germany, а также совместно с другими подразделениями организовала разработку первого отечественного стандарта протокола Ethernet EPA и первый промышленный стандарт протокола беспроводной связи WIA-PA, который стал международным стандартом IEC.

Наши продукты и технологии получили две Национальные награды за научно-технический прогресс, одну Национальную премию за научно-технические изобретения, одну Первую премию за научно-технический прогресс Китайской академии наук, одну Первую премию за научно-технический прогресс провинции Ляонин. продукция экспортируется по всему миру. Мы успешно завершили более 200 крупных проектов по автоматизации.

Microcyber Corporation является членом организации FCG; член ПНО.

Корпорация Microcyber успешно прошла сертификацию системы менеджмента качества ISO9001:2008 и сертификацию системы качества ISO/TS16949 для автомобильной промышленности. Отличная команда разработчиков, богатый опыт проектирования и внедрения систем автоматизации, ведущие в отрасли продукты, обширная рыночная сеть и отличная корпоративная культура заложили прочную основу для запуска и устойчивого развития компании.

Несение идеалов сотрудников, создание ценности для клиентов и содействие корпоративному развитию.

ОГЛАВЛЕНИЕ

ГЛАВА '	1. ОБЗОР ПРОДУКТА	1
ГЛАВА 2	2. УСТАНОВКА И ПАСПОРТНАЯ ТАБЛИЧКА	3
2.1 2.2 2.3 2.4	Установка L-образного кронштейна Резьбовой монтаж Установка фланца Заводская табличка	3 3 4 4
ГЛАВА 3	3. ФОРМА И СТРУКТУРА	5
3.1 3.2	Механическая структура Размер	5 6
ГЛАВА 4	4. ВВЕДЕНИЕ ПРЕОБРАЗОВАТЕЛЯ ТЕМПЕРАТУРЫ	7
4.1	Аппаратный интерфейс	7
ГЛАВА	5. КОНФИГУРАЦИЯ БЕСПРОВОДНОГО ДАТЧИКА ТЕМПЕРАТУРЫ	8
5.1 5.2 5.2. 5.2. 5.2. 5.2. 5.2. 5.2. 5.	Топология сети Функциональная конфигурация 1 Среда настройки 2 Конфигурация базовой информации 3 Конфигурация датчика 4 Конфигурация конфигурационной информации 5 Настройки отображения интерфейса 6 Линейная коррекция 7 Мониторинг переменных 8 Конфигурация сетевой информации 9 Настройка пакетной передачи 10 Мониторинг сети 11 Информация о версии беспроводного модуля 12 Другая конфигурация	8 9 10 12 13 14 15 16 17 17
ГЛАВА (6. КОНФИГУРАЦИЯ ПОЛЯ	.19
6.1	Описание ЖК-дисплея и клавиш	19
ГЛАВА :	7. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ	.23
7.1 7.2 7.3 7.4 7.5	Замена батареи Меры предосторожности при обращении Вопросы окружающей среды Меры предосторожности при транспортировке Обработка исключительных ситуаций	23 23 23 23 23 23
ГЛАВА 8	В. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	25

Chapter 1. Обзор продукта

NCS-TT105W — это беспроводной преобразователь температуры WirelessHART, разработанный корпорацией Microcyber. Преобразователь может использоваться с широким спектром датчиков для сигналов RTD, TC, Ω и мВ с высокой точностью и широким диапазоном и обеспечивает стабильную и надежную беспроводную связь для автоматизации процессов. Технология WirelessHART безопасна и доступна по цене, позволяя быстро устанавливать устройства в точках измерения без проводки. ЖК-дисплей отображает информацию об измерениях в полевых условиях для улучшения видимости данных процесса.

Рис. 1. 1 беспроводной преобразователь температуры

Пользователи могут настраивать и настраивать с помощью программного обеспечения для настройки WirelessHART MPT, предоставленного Microcyber, а также предоставлять файл DD, поддерживающий формат ручного контроллера 475, что удобно для пользователей при настройке и настройке беспроводного преобразователя температуры с помощью ручного контроллера 475. Устройство можно настроить и отслеживать данные через шлюз после его подключения к сети. В случае локальной работы беспроводной преобразователь температуры также оснащен тремя кнопками для расширенных функций настройки, таких как конфигурация и конфигурация типа датчика, метод подключения, верхний и нижний диапазоны и единицы измерения и т. д.

В головке измерителя с ЖК-дисплеем с беспроводным преобразователем температуры используется точечный матричный ЖК-экран с белой подсветкой, который может интуитивно

отображать текущее значение температуры и процент диапазона, а также может поворачиваться в пределах 90 ° / 180 ° / 360 °, обеспечивая удобство наблюдения для пользователей. с любого угла. Дополнительную информацию о беспроводном преобразователе температуры см. в остальной части данного руководства.

Chapter 2. Установка и заводская табличка

Для монтажа беспроводного преобразователя температуры доступны L-образный кронштейн, резьбовой монтаж и фланцевый монтаж.

2.1 установка L-образного кронштейна

Рисунок 2.1 Схема установки Г-образного кронштейна

2.2 Резьбовая установка

Рисунок 2.2 Схема резьбового монтажа

2.3 Установка фланца

Рисунок 2.3 Схема установки фланца

2.4 Паспортная табличка продукта

Этот продукт доступен только с табличкой на английском языке, если вам нужна табличка на

китайском языке, укажите это перед заказом.

Рисунок 2.4 Схема заводской таблички изделия

Chapter 3. Форма и структура

3.1 Механическая структура

Как показано на рисунке ниже, в беспроводной преобразователь температуры установлен набор карт для сбора и передачи данных. Карточка комплекта переднего отсека состоит из ЖК-карты, платы сбора данных и беспроводного модуля, а задний отсек состоит из батарейного отсека, батарейного модуля, электрического разъема и верхней крышки аккумуляторного отсека.

counterclockwise) 2. Then remove the upper cover of the battery compartment 3. Install the battery module into the battery compartment as shown in the diagram, and confirm that the electrical plug-in is well connected 4. Install the upper cover of the battery compartment, then screw the back cover into the instrument (clockwise rotation), the end face of the back cover and the end face of the instrument case can fit. Note: The battery is installed when the instrument is powered on and used, and the instrument is powered on when the battery is installed and enters the work state. Battery compartment Battery module Electrical plug-in Battery compartment top cover Back cover

Battery installation:

1. First remove the back cover (rotate the back cover

Рис. 3.1 Структурная схема

3.2 Измерение

Рисунок 3.2 Габаритные размеры

Chapter 4. Введение датчика температуры

4.1 Аппаратный интерфейс

Беспроводной датчик температуры питается от батареи 3,6 В.

Схема аппаратного интерфейса датчика беспроводного датчика температуры показана на рисунке 4.1:

Рисунок 4.1 Описание аппаратного интерфейса

Рисунок 4.2 Описание проводки датчика

Chapter 5. Конфигурация беспроводного датчика температуры

5.1 Топология сети

В практических промышленных приложениях система обычно делится на уровень оборудования и уровень мониторинга. Уровень оборудования обычно включает датчик температуры WirelessHART, датчик давления WirelessHART, адаптер WirelessHART и т. д. Проводное оборудование HART необходимо подключить к адаптеру WirelessHART, а затем преобразовать проводной сигнал HART в сигнал WirelessHART для передачи. WirelessHART Сеть оснащена оборудованием шлюза WirelessHART, которое отвечает за распределение ресурсов и сбор данных всей сети и является основным оборудованием всей беспроводной сети. Наконец, данные будут подключены к системе управления, программному обеспечению для настройки хоста или центру обработки данных через шлюз к протоколу ModbusRTU / ModbusTCP, чтобы реализовать мониторинг данных и работу по настройке.

Рисунок 5.1 Принципиальная схема топологии сети

5.2 Функциональная конфигурация

Беспроводной преобразователь температуры поддерживает программное обеспечение для настройки WirelessHART-MPT от Shenyang Microcyber Corporation, а также SDC625 от HART Foundation и другое общее программное обеспечение для настройки WirelessHART для отладки конфигурации. Нижеследующее в основном использует программное обеспечение для настройки WirelessHART-MPT от Microcyber Corporation в качестве примера, чтобы представить метод настройки беспроводного преобразователя температуры. В основном он включает в себя следующие несколько функций:

 Конфигурация базовой информации: настройка базовой информации об онлайн-оборудовании, включая этикетку, адрес, дату, номер сборки и другую информацию;

MICROCYBER⁻

- Конфигурация информации о датчике: настройка информации о датчике подключенного устройства, включая информацию о типе и проводке;
- Конфигурация информации о конфигурации: настройка информации о конфигурации онлайн-оборудования, включая основной диапазон переменных, демпфирование и другую информацию;
- Настройки отображения интерфейса: настройка информации ЖК-дисплея онлайн-устройства, включая номер интерфейса, время отображения, номер отображения, источник отображения и другую информацию;
- 5) Линейная коррекция: многоточечная (16 точек данных (калибровка для онлайн-оборудования);
- 6) Мониторинг переменных: он может регулярно обновлять все динамические переменные выбранного онлайн-устройства и отображать кривую тренда основной переменной текущего устройства.
- Конфигурация сетевой информации: настройка сетевой информации онлайн-оборудования, включая добавление ключа, режим присоединения и идентификатор сети;
- Конфигурация информации о пакете: Настройте информацию о пакете онлайн-устройств, в том числе;
- 9) Мониторинг сети: он может регулярно обновлять статус сетевого доступа онлайн-устройства;
- Другая конфигурация: настройте радиочастотную информацию онлайн-оборудования, которая может изменить мощность передачи (0 ~ 13 дБм);

5.2.1 Среда конфигурации

- 1) ПК с последовательным портом, операционная система Windows 2000\Windows XP\Windows 7;
- 2) модем HART и линия последовательного порта;

5.2.2 Основная информация Конфигурация

Основная информация о беспроводном преобразователе температуры может быть прочитана или изменена на вкладке «Основная информация». Изменяемая информация включает краткий адрес оборудования, сообщение, описание, номер станции, дату, номер сборки; неизменяемая информация включает в себя выбор сигнала тревоги, защиту от записи, идентификатор производителя, производителя, тип устройства, идентификатор устройства, длинный адрес и информацию о версии, как показано на рисунке 5.2.

Info Sensor Config Window Settings Liner Revise Device Scan Network configure Burst Configure Network Monitor Wireless Module Information Other configure

Apply

Message	MANUFACTURED BY MICR	OCYBER.	
Descrption	SMART INSTRUMENT		
Tag	TT105W	Alarm	Unknown
Date	2022 / 1 / 1	Writable	Enable
Assembly	FFFFF	Vendor ID	FA
dentification	1	Revision	
Manufactur	er Microcyber Inc.	Universal	7
Type	NCS-TT105W	Device	10
Device ID	00 6F FF	Hardware	10
Unique ID	E5 78 00 6F FF	Software	1.2

Рисунок 5.2 Основная информация

Информацию можно загрузить на устройство, нажав кнопку «Приложение».

- 1) Диапазон выбора адреса: 0~63;
- 2) Сообщения могут содержать до 32 символов;
- 3) Описание может содержать до 16 указанных символов;
- 4) Максимальная длина метки составляет 8 указанных символов;
- 5) Диапазон дат от 1900 до 2155;
- 6) Максимальная длина номера сборки составляет 6 указанных символов.

5.2.3 Конфигурация датчика

Вкладка «Информация о датчике» позволяет просматривать текущую информацию о настроенном датчике (верхний, нижний, минимальный диапазон), а также тип, систему проводки и т. д. для каждого датчика, сконфигурированного отдельно. Как показано на рисунке Рисунок 5.3.

Sensor CO	nig window Securi	Is Liner Revi	Se Device Scar	Network configure	Burst Configure	Network Monitor	wireless Module Information	Other conligue
nsor 1								
Sensor Setting			Sensor Calibrat	2				
Туре	N_TC	\sim	2	-Wire Zero Calibrate				
Connection	Two Wires	~		TC Calibrate				
Cold	No compensation	~						
Cold Preset	0.000	°C	F	TD Calibrate (Zero)				
Channel	SUCCESS		RT	D Calibrate (0_500R)				
Sensor Value	32807		RTI	Calibrate (0 2000R)				
	A	pply						
			RTI	O Calibrate (0_4000R)				
R0 Adjust	1.000000		Calibration po	int :				
	Co	orrect	mv Value	15.000	mV			
Sensor			500 ohm Value	400.000	Ohm			
Upper Limit	1300.000	°C	2000 ohm	1600.000	Ohm			
Lower Limit	-270.000	°C	4000 ohm	3200.000	Ohm			
Min Span	15.700	 ℃		Down	load			
				Dom				
tore Setting			Acquisition Cycle	10	(1~60s)			
Restore to the	default factory			Ap	ply			
Restore t	o factory							
Save as	factory							

Рисунок 5.3 Конфигурация датчика

Тип датчика: Установите поддерживаемые модели датчиков, см. таблицу ниже:

Таблица 5.1

Тип датчика	Описывать
0_500p	Сопротивление, (0 ~ 500) Ом
0_4000p	Сопротивление, (0 ~ 4000) Ом
50 д.е.	Cu50
100 д.е.	Cu100
PT100	PT100
PT200	PT200
PT500	PT500
PT1000	PT1000
100 мВ	Сигнал напряжения мВ, диапазон: (-100 ~ 100) мВ
B_TC	Б
И Т. Д	E
J_TC	Дж
K_TC	К
N_TC	Н
R_TC	p
S_TC	С

 Т_ТС
 Т

 ►
 Тип датчика: включая сопротивление (0 500 Ом, 0 4000 Ом), тепловое сопротивление (Си

- 50, Cu 100, Pt 100 и Pt1000), -100~ + 100 мВ, термопара (B, E, J, K, N, R, S и т).
- Линейная система: может быть установлена на 2,3,4 линейную систему (сопротивление, сигнал термосопротивления), термопара для 2-линейной системы. Для датчика 2 можно настроить только 2,3-проводную систему.
- Компенсация холодного конца: действительна только для термопар. Он может быть установлен на запрет холодного конца, внутреннее измерение, фиксированное значение тремя способами. Если холодный конец запрещен, передатчик не компенсирует холодный конец; температура, компенсируемая холодным концом, обеспечивается микросхемой измерения внутренней температуры; температура, компенсируемая холодным концом, является заданной температурой;
- Состояние канала: отображение состояния канала датчика (разомкнутая цепь, короткое замыкание и т. д.).
- > Значение канала датчика: отображает исходное значение канала датчика.
- Поправочный коэффициент R0: исправить ошибку самого датчика (диапазон 0,9~1,1).
- Двухлинейная калибровка нуля: когда преобразователь температуры подключен к RTD в 2-линейной системе, во избежание ошибки, вызванной сопротивлением на кабеле, вы можете закоротить конец датчика, а затем нажать «два-линии». калибровка нулевой точки линии», чтобы устранить ошибку, вызванную сопротивлением на кабеле.
- Калибровка ТП: заводская калибровка термопар и сигналов милливольт.
- Калибровка RTD: заводская калибровка теплового сопротивления и сигналов сопротивления.
- Точка калибровки: стандартное значение, используемое для калибровки преобразователя.
- Восстановить заводские настройки: нажмите эту кнопку, чтобы вернуть все данные к заводским настройкам по умолчанию.
- Сохранить как заводское значение: нажмите эту кнопку, чтобы сохранить текущую конфигурацию в качестве заводского значения. Когда вы снова нажмете кнопку «Восстановить заводские настройки», он будет восстановлен до этой сохраненной конфигурации.
- Восстановить заводские настройки: нажмите эту кнопку, чтобы восстановить данные до заводского состояния. Если пользователь сохранил заводские значения, то возвращается к сохраненной пользователем конфигурации; в противном случае возвращается к заводскому состоянию по умолчанию.
- Acquisition Period: настройте период получения AD, диапазон (1 ~ 60) секунд.

5.2.4 Конфигурация конфигурационной информации

Информацию о конфигурации карты можно прочитать или изменить на вкладке информации о конфигурации, включая отображение выходных переменных устройства (основная переменная,

значение температуры холодного конца, напряжение батареи, процент первичной переменной), настройку информации об основной переменной (значение демпфирования, единица измерения, верхний предел диапазона, нижний предел диапазона) и т. д., как показано на рисунке 5.3.

Tele Course Cooper Mindau Cathere Line Davies Davies Core Mahard and and the Davies Mahard Marker Mindau Mahard

fo Sensor Comig Window Settings	Liner Revise Device Scan INetwork configure B	Burst Configure Network Monitor Wireless Module Information Other configure
PV Setting	Variable Mapping PV SENSOR	
Damping 0.0 Sec	SV TEMPERATURE ~	
Setting:		
Upper Range 1300.000 °C		
SET by current value:		
Upper Range Lower Range		
		Apply

Рисунок 5.4 Информация о сборке

- > Демпфирование: диапазон от 0 до 32 секунд.
- Единица измерения: изменение единицы измерения PV напрямую влияет на переменные, связанные с единицей измерения, такие как верхний и нижний пределы диапазона, верхний и нижний пределы датчика и т. д. При изменении единицы измерения верхний и нижний пределы основного диапазона переменных не могут быть изменены. быть изменены в то же время, и должны быть изменены соответственно.
- ≻ Единица измерения может быть установлена на: °C, °F, °R, K, мB, Ом.
- Верхний диапазон: верхний предел числа PV.
- > Нижний диапазон: нижний предел числа PV.

Информацию можно загрузить на устройство, нажав кнопку Приложения.

- Установите кнопку «Верхний предел диапазона» с текущим значением: установите текущее значение PV устройства на верхний предел диапазона основной переменной, а нижний диапазон не изменится.
- Установите кнопку «Нижний предел диапазона» с текущим значением: установите текущее значение PV устройства на нижний предел основного диапазона переменных, который может одновременно изменить верхний предел.

5.2.5 Настройки отображения интерфейса

Через карту настройки дисплея интерфейса можно считывать или изменять информацию о конфигурации ЖК-дисплея, включая выбор установленного номера (1 ~ 2), время отображения (20 секунд, 40 секунд, 60 секунд и всегда ярко), интерфейс показывает цифры (отображение целое число, два десятичных знака, два десятичных знака) и отобразить источник значения (PV, SV, отмена отображения), как показано на рис. 5.5.

Info Sensor Config Window Settings Liner Revise Device Scan Network configure Burst Configure Network Monitor Wireless Module Information Other configure

/indow Number	1	~	Showing Time:	20	→ Sec
D Parameters Setti	ngs				
howing Window:	Three Decimal Places	~	Showing Source:	Display PV	~
					Apply

Рисунок 5.5 Настройки отображения интерфейса

5.2.6 Линейная коррекция

Многоточечная калибровка датчика возможна благодаря функции линейной коррекции. Режим коррекции – режим «Цифровая величина». Количество скорректированных точек можно свободно выбирать в диапазоне от 2 до 16 точек. Когда требуется вторая многоточечная калибровка, нажмите кнопку «Восстановить по умолчанию» для следующей калибровки.

Sens	or Config	Window Se	ettings	Liner Revise	Device Scan	Network	configure	Burst Corrigure	Network Monitor	Wireless Module Information	Other config
Target	Value	М	easured V	/alue	Revise M	lode	Choose	Sensor			
100		1	.00.2		D	~	Sensor	1 ~			
Inde	x Targe	t Value	Measure	ed Value	Add]					
2	200		200.2		Modify						
-					Delete]					
-					Read Re	vise Count					
					incod Ke	Hist Count	_				
-											
Wr	rite Revise	Resto	re Defaul	t Rei	ad Revise						

5.2.7 Мониторинг переменных

Через вкладку мониторинга переменных вы можете регулярно обновлять все динамические переменные выбранного устройства и отображать кривую тренда основных переменных текущего устройства. Текущие обновляемые переменные: значение PV, текущее значение, напряжение

батареи и процент диапазона значений PV.

5.2.8 Конфигурация сетевой информации

Ключ ввода и сетевой идентификатор идентификатора сети и ключа входа устройства должны соответствовать шлюзу (подробности см. в Руководстве по интеллектуальному шлюзу G1100 WirelessHART). Идентификатор сети и ключ доступа можно получить на странице «Настройки» в интеллектуальной беспроводной сети, как показано на рисунке 5. 8. Нажмите «Конфигурация сетевой информации» программного обеспечения для настройки, введите полученный ключ доступа и идентификатор сети в соответствующее поле. положение, выберите режим присоединения «Присоединиться сейчас», и устройство готово к подключению к сети.

MICROCYBER		Wi	reles	sHART	Gateway	● 主文 / 参 2023/04/14
	Network Setting					
Gateway Gatewa	Network Name Network ID Join Key Show Join Key Submit Active Advertising: Activated Gateway Restart: Restart	myNet 2222 O Yes ® No	*Please e	nter digits , letters (case	e-sensitive) or common symbols.	

Рисунок 5.8 Информация о беспроводной сети

Info Sensor Config Window Settings Liner Revise Device Scan Network configure Burst Configure Network Monitor Wireless Module Information Other configure

Join Mode 🛛 Join now 🗸 🗸	
Network ID	
Network ID 1229	App
	10 m -

Рисунок 5.9 Информационная конфигурация беспроводной сети

5.2.9 Пакетная настройка

Беспроводной преобразователь температуры использует пакетный режим для регулярной передачи данных устройства на шлюз, а пакетную информацию можно настроить в программном обеспечении для настройки WirelessHART-MPT и в беспроводной сети, как показано на рис. 5. 10. Пакетные сообщения поддерживают 0-34. сообщений, 4 режима сообщений независимы друг от друга. Пакетный цикл поддерживает 1с, 2с, 4с, 8с, 8с, 16с, 32с и 60с~3600с. В поле триггера можно изменить режим триггера, а также переменные и единицы измерения устройства, а беспроводной преобразователь температуры поддерживает только режим непрерывного триггера. Переменная устройства активируется только тогда, когда команда Burst имеет значение 9, и вы можете изменить транспортную переменную Burst. Код команды поддерживает шесть команд 1, 2, 3, 9, 33, 48. Переключите пакетный режим в положение ON и включите пакетный режим. Когда устройство входит в сеть, откройте пакетный режим, нужно дождаться определенного времени задержки запуска.

Message			Device V	/ariable				
Burst Message	0	~	Slot0	250	Slot4	250	Apply	
Period			Slot1	250	Slot5	250		
Burst Period	32	s	Slot2	250	Slot6	250		
			Slot3	250	Slot7	250		
Trigger								
Trigger Mode	Continuous	\sim	Comman	d	15			
Device Variable		~	Comm	and Code	3	~		
Units	250				3			
Trigger Level	nan		Mode					
			Burst	Mode	OFF	~		

~ 16 ~

Рисунок 5.10 Пакетная конфигурация

5.2.10 Мониторинг сети

Чтобы просмотреть состояние сети устройства, вы можете нажать на мониторинг сети для просмотра, как показано на рис. 5. 11. Обычный процесс доступа занимает 2-5 минут, а продолжительность доступа зависит от количества сетевого оборудования, та же сеть и расстояние между оборудованием и шлюзом. Когда бесконечный режим показывает «Работает» в строке параметров состояния, устройство успешно входит в сеть. Зайдя на страницу шлюза, вы увидите, что устройство вошло в сеть.

Status Parameter			Status Monito	or		
Wireless Mode	Operational		Net	twork Packets Heard		
Join Status	0x079f		ASI	N Acquired		
			🔘 Syr	nchronized to Slot Time		
Number of available neighbors	2		O Ad	vertisement Heard		
Number of Advertising Packets	60		O Joir	n Requested		
Number of join attempts	1	٦	Join 💮	n Retrying		
			joi	n Failed		
Join retry timer	120	S	Net	twork Joined		
Network search timer	400	S	O Au	thenticated		
			O Ne	gotiating Network		
			Nor	rmal Operation Comme	ncing	

Рисунок 5.11 Мониторинг сети

5.2.11 Информация о версии беспроводного модуля

На этой странице вы можете просмотреть информацию о версии аппаратного и программного обеспечения беспроводного модуля.

Info	Sensor	Config	Window Settin	gs Liner Revise	Device Scan	Network configure	Burst Configure	Network Monitor	Wireless Module Information	Other configure
	Versi	on Display	v							
		Softv	vare Version	1.0						
		Hard	ware Version	3.0						
			Рис	сунок 5.12	2 Инфор	мация о вер	сии беспр	оводного м	иодуля	

5.2.12 Другая конфигурация

На других страницах конфигурации можно включить или выключить чувствительность приема. Если шлюз находится слишком далеко от устройства или мощность сигнала ограничена, можно включить чувствительность приема, а мощность передачи по умолчанию составляет 10 дБм.

Info	Sensor	Config	Window Setting	Liner Revise	Device Scan	Network configure	Burst Configure	Network Monitor	Wireless Module Information	Other configure	
	Radio		[]								
	Sensi	UVITY									
	Powe	er	10 dBm								
			Apply								
			Арріу								
					Dura						
					Рисуно	эк э.тэ друг	ая конфи	гураци			

Chapter 6. Конфигурация поля

6.1 ЖК-дисплей и описание клавиш

Беспроводной преобразователь температуры оснащен жидкокристаллическим ЖК-дисплеем и функцией локальной настройки с клавиатуры, что позволяет пользователю локально настраивать многочисленные параметры беспроводного преобразователя температуры.

Жидкокристаллический ЖК-дисплей для переменного отображения, как показано на рисунке 6.1.

Рисунок 6.1 Отображение информации

ЖК-дисплей состоит из шести основных компонентов, как показано в следующей таблице: Таблица 6.1

Нет.	Отображать	Описание
1		Мощность беспроводного сигнала
2		Процент первичных переменных
3		Заряд батареи
4		Значение температуры
5	PV	Идентификация первичной переменной
6	NAVI NAVI © NAVI NAVI © NAVI NAVI VANI VANI © VANI NAVI © VANI VANI	Единица измерения температуры

Во время нормальной работы на ЖК-дисплее всегда отображается значение температуры (значение PV). Как показано ниже, с левой стороны отображается изображение беспроводного устройства без сети (отображение уровня сигнала отсутствует), а с правой стороны отображается

отображение беспроводного устройства с подключением к сети (отображение уровня сигнала).

Рисунок 6.2 Схема дисплея

Есть 3 клавиши, [M], [S], [Z], [M] — клавиша режима, в основном отвечающая за «выбор функции», «перемещение курсора» и «ОК». Клавиши [S] и [Z] являются клавишами настройки ввода, в основном отвечающими за «пролистывание меню вперед и назад» и «значение сложения и вычитания».

Рисунок 6.3 Схема функционального меню

Рисунок 6.3

Код функции главного меню	Описание главного меню	Код функции подменю	Описание функций подменю
Fun30	Установить короткий адрес		
Fun31	Установить параметры PV	Fun03	Текущее значение устанавливается на нижний предел диапазона PV.
		Fun04	Текущее значение устанавливается на верхний предел диапазона PV.

		Fun05	Установите значение демпфирования PV
		Fun06	Установите нижний предел диапазона PV вручную
		Fun07	Установите верхний предел диапазона PV вручную
		Fun10	Установите передаточную функцию PV
		Веселье12	Установите единицу измерения PV
		Веселье13	Выберите нужный канал для установки
	Установите параметры в канале сбора данных	Fun22	Выберите тип датчика для подключения к каналу сбора данных.
Fun32		Fun23	Выберите проводную систему датчика, подключенного к каналу сбора данных.
		Веселье25	Установите компенсацию холодного конца
		Fun26	Установите двухстрочную калибровку нуля
		Веселье27	Установите период приобретения
		Fun91	Установите интерфейс дисплея 1
	Настройки интерфейса дисплея	Fun92	Установите интерфейс дисплея 2
Fun34		Fun95	Установка источника отображаемых данных
		Fun97	Установите количество бит отображаемых данных
Fun35	Просмотр информации о беспроводной сети	Fun43	Проверка состояния беспроводной сети
	Просмотр информации об устройстве	Fun88	Просмотр информации о версии программного обеспечения
Fun36		Fun89	Просмотр информации о версии оборудования
		Fun90	Просмотр краткой информации тега

Chapter 7. Техническое обслуживание и ремонт

7.1 Замена батареи

В нормальных условиях ожидаемый срок службы модуля питания составляет 3 года. Если необходимо заменить модуль питания, выполните следующие действия.

- 1. Снимите заднюю крышку корпуса.
- 2. Отсоедините шнур питания.
- 3. Замените модуль питания. 4.
- 4. Затяните заднюю крышку корпуса и проверьте работу.

7.2 Меры предосторожности при обращении

Модуль питания содержит литиевую батарею 3,6 В, которая не будет реагировать в нормальных условиях, пока батарея и батарейный блок не повреждены. Следует предотвращать термические повреждения, электрические повреждения или механические повреждения. Контакты должны быть защищены от преждевременного разряда.

Модуль питания следует хранить в чистом и сухом месте. Чтобы максимально продлить срок службы модуля питания, температура хранения не должна превышать 30 °C (86 °F). Следует соблюдать осторожность при обращении и может быть поврежден при падении с высоты более 5 м (15 футов).

7.3 Экологические соображения

Как и в случае с любой другой батареей, для надлежащего обращения с разряженными батареями необходимо ознакомиться с местными экологическими нормами. Если нет особых требований, рекомендуется утилизация через квалифицированное предприятие по переработке.

7.4 Меры предосторожности при транспортировке

Это устройство поставляется вам без подключенного модуля питания. Пожалуйста, удалите модуль питания перед отправкой устройства.

Феномен	Измерение
Порт обслуживания Невозможно	Подключение беспроводного датчика температуры Проверьте подключение кабеля шины
общаться	Подключение к сети Проверить правильность топологии сети

7.5 Обработка исключений

	Ошибка адреса		
	Короткий адрес по умолчанию для беспроводного преобразователя		
	температуры равен 0. Если вы забыли предыдущую настройку после		
	изменения адреса, щелкните полный поиск в программном обеспечении для		
	настройки или войдите в систему на ЖК-дисплее, чтобы просмотреть		
	информацию об адресе.		
	Неисправность беспроводного преобразователя температуры		
	Проверка замены на другие беспроводные преобразователи температуры.		
	Отказ батареи		
	Обнаружение разрядки батареи или ненормальной линии питания батареи		
	Проблемы с подключением датчика температуры		
	Проверьте датчик на короткое замыкание, обрыв цепи, заземление и другие		
	проблемы.		
	Проверить датчик на наличие неисправностей		
	Шумовые помехи		
	Отрегулируйте демпфирование		
аварийный ток	Проверьте, не влажные ли клеммы		
	Проверьте, не проложен ли кабель вдали от источников сильных помех.		
	Настройка программного обеспечения		
	Проверьте правильность конфигурации типа датчика		
	Ошибка ключа соединения		
	Ключ соединения не читается, т. е. считанный обратно ключ соединения		
	состоит из нулей, переконфигурированных в соответствии с информацией о		
	ключе на шлюзе WirelessHART.		
Не удается	Ошибка режима присоединения		
получить доступ	Выберите «Присоединиться сейчас» для режима присоединения.		
к сети	Ошибка идентификатора сети		
	Реконфигурация на основе идентификатора сети на шлюзе WirelessHART		
	Слабый сигнал		
	Увеличьте чувствительность приема на других страницах конфигурации, но эта		
	операция увеличит энергопотребление.		

Chapter 8. Технические характеристики

8 1. Основные параметры

Таблица 8.1

Протокол	Беспроводной протокол HART/HART		
Входной	Pt100, Pt1000, PT200, PT500, CU50, CU100, 0 ~ 500 Ом,		
сигнал	0 \sim 4000 Ω ;термопара BEJKNRST, -100мB \sim 100мB		
Метод			
подключения	2,3,4 провода		
RTD			
Батарея	19000 мАч/3,6 В (один блок)		
Срок службы	3 года работы от батареи при температуре окружающей среды		
батареи	25 ℃ , частоте обновления 1 минута и выключенном		
	ЖК-дисплее		
Беспроводная	10 мВт (10 дБм)		
мощность			
Дальность			
беспроводной	0~150м		
передачи			
Усиление	БиБи		
антенны	Здый		
КСВ антенны	≤2		
Диапазон	2400-2500МГц		
частот антенны			
Количество	Один канал		
каналов			
Отображать	Сегментный ЖК-дисплей		
Диапазон	Рабочая температура корпуса передатчика: (-20 ~ 70) °С		
температур	таоочая температура корпуса передатчика. (-20 ~ 70) С		
Температура	-40 \sim 85 $^\circ\mathrm{C}$		
хранения			
Диапазон	(0~95)% относительной влажности		
влажности			
Время запуска	≤5 c		
Пакетный цикл	1~3600 с настраивается пользователем		
обновления			

Регулировка	Постоянная времени 0~32с
демпфирования	
Температура	±0,5 ℃
холодного	
конца	
Рейтинг	Ex d IIC T4 Gb (разработан в соответствии с этим стандартом,
взрывозащиты	без сертификации)
Класс защиты	IP67
Электромагнитн	стандарт EN61326
ая	
совместимость	

8 2. Технические характеристики РДТ

• Индекс точности RTD при нормальной температуре (25 °C)

Таблица 8.2. 1

Тип сигнала	Диапазон датчика (ீ்)	Точность (25 ℃)	Температурный дрейф (на градус Цельсия)
Сигнал	0~500 Ом	±0,04 Ом	±0,001 Ом
сопротивле ния	0~4000 Ом	±0,35 Ом	±0,015 Ом
PT100	-200 ~ 850 ℃	±0,15 ℃	±0,003 ℃
PT200	-200 ~ 850 ℃	±0,15 ℃	±0,005 ℃
PT500	-200 ~ 850 ℃	±0,15 ℃	±0,005 ℃
PT1000	-200 ~ 850 ℃	±0,15 ℃	±0,005 ℃
50 д.е.	-50 ~ 150 ℃	±0,15 ℃	±0,005 ℃
100 д.е.	-50~ 150 ℃	±0,10 ℃	±0,003 °C

• РДТ Прочие технические характеристики

Таблица 8.2. 2

Метод	234
проводки	2, 0, 7
Коэффициен	
т подавления	>70 лБ (50 Гини 60 Ги)
синфазного	
сигнала	
Коэффициен	
т подавления	
дифференци	≥70 дБ (50 Гц и 60 Гц)
ального	
режима	

8 3. Технические характеристики термопары

• Индекс точности температуры термопары (25 °C)

Таблица 8.3. 1

Тип сигнала	Диапазон датчика (ீ்)	Точность (25 ℃)	Температурный дрейф (на градус Цельсия)
MR	$100 \text{ MB} \sim \pm 100 \text{ MB}$	+0.025 MB	±0.001 MB
MD	-100MB / +100MB	10,023 MD	
Б	500 ℃ ~ 1810 ℃	±0,77 ℃	±0,050 ℃
E	-200 ℃ ~ 1000 ℃	±0,20 ℃	±0,025 °C
Дж	-190 ℃ ~ 1200 ℃	±0,35 ℃	±0,01 ℃
К	-200 ℃ ~ 1372 ℃	±0,40 ℃	±0,025 °C
Н	-190 ℃ ~ 1300 ℃	±0,50 ℃	±0,015 °C
р	0 ℃ ~ 1768 ℃	±0,75 ℃	±0,023 °C
С	0 ℃ ~1768 ℃	±0,70 ℃	±0,023 °C
Т	-200 ℃ ~400 ℃	±0,35 ℃	±0,015 °C

• Другие технические характеристики термопары

Таблица 8.3. 2

Тип датчика	B,E,J,N,K,R,S,T;(-100~100)мВ	
Коэффициент		
подавления	>70 pE (50 Eu # 60 Eu)	
синфазного		
сигнала		
Коэффициент		
подавления		
дифференциальног		
о режима		

Микрокибер

https://www.microcybers.com

Адрес: улица Венсу, 17-8, новый район Хуннань, Шэньян, Китай. Почтовый индекс: 110179 Тел: 0086-24-31217295 / 31217296 Факс: 0086-24-31217293 Электронная почта: sales@microcyber.cn