MICROCYBER

G0310 Modbus к HART г проход Руководство пользовате

ЛЯ

MICROCYBER

Предупреждение

- 1. Пожалуйста, не снимайте и не устанавливайте шлюз наугад.
- 2. Пожалуйста, проверьте, соответствует ли мощность набора температурных плат требованиям к мощности, указанным в руководстве пользователя.

Введение компании

Місгосуber Inc. , созданная как высокотехнологичное предприятие Шэньянским институтом автоматизации Китайской академии наук, в основном занимается передовыми промышленными системами управления, оборудованием, инструментами и микросхемами для решений по управлению промышленными процессами в исследованиях, разработках, производстве и применении. Микрокибер выполняет ряд ключевых национальных научно-технических задач и Проект «863», а также исследовательский центр сетевых систем управления в провинции Ляонин. Компания успешно разработала стек протоколов полевой шины FF H1, получивший наибольшее международное одобрение в Китае, и протокол промышленной сети Ethernet (HSE), получивший одобрение номер один в Китае, а также первый отечественный прибор полевой шины с функцией искробезопасный взрывозащищенный и защитный барьер национального уровня. Также компания Microcyber участвовала в разработке первого отечественного стандарта протокола промышленной автоматизации на базе Ethernet (Ethernet for Plant Automation, EPA). В результате серийные продукты состоят из конфигурации, управляющего программного обеспечения, встроенного программного обессечения, из конфигурации, иравляющего программного обеспечения, котроение макросхемы и платы OEM, что делает Microcyber поставщиком полного спектра продуктов промышленной автоматизации, а также укрепляет лидирующие позиции Microcyber в области технология полевой шины.

Microcyber является Членом FCG и Национальной организации Profibus (PNO).

Microcyber проходит аутентификацию системы качества ISO 9001 и имеет выдающуюся инновационную команду по исследованиям и разработкам, богатый практический опыт проектирования автоматического проектирования, ведущие серии продуктов, огромную рыночную сеть, строгую систему управления качеством и отличную корпоративную культуру. Все это создает прочную основу для предпринимательства и устойчивого развития Microcyber.

Microcyber Inc. надеется на долгосрочное гладкое и тесное сотрудничество с вами.

Содержание

Глава 1 Обзор	. 1
1.1 Размер	. 1
1.2 Структура	.1
Глава 2 Установка	. 2
2.1 Электропроводка	2
2.2 Конфигурация перемычек	. 2
2.3 Внутреннее сопротивление нагрузки	.3
2.4 Повторная калибровка	.3
Глава 3 Принцип работы	. 5
Глава 4 Дерево меню	.6
Глава 5 Конфигурация передатчика 6 7	

Chapter 1 Обзор

G0310 Modbus to HART Gateway, разработанный Microcyber Corporation, представляет собой шлюз для протоколов Modbus-RTU и HART. В качестве ведущего устройства Modbus шлюз G0310 Modbus to HART обменивается данными с устройствами, поддерживающими функцию связи Modbus-RTU, через интерфейс RS485. Он может преобразовывать данные устройства в вывод переменных устройства HART, а также поддерживает выходной ток 4–20 мА. Как показано в Рисунок 1.1:

Рисунок 1.1 Шлюз Modbus-HART

1.1 Измерение

Рисунок 1. 2 Размер (единица измерения: мм)

1.2 Состав

Chapter 2 Монтаж

Размеры шлюза GO310 Modbus для HART составляют 99*22,5*114,5 мм. Он поддерживает стандартную установку на DIN-рейку.

2.1 Электропроводка

GO310 Modbus - HART и их значение показаны на рис. 2.1.

			i
1	24B-	2	24B+
3	Северная Каролина	4	Северная Каролина
5	A+	6	Б-
7	ЗАЗЕМЛЕНИЕ	8	ЗАЗЕМЛЕНИЕ
9	HART+	10	HART-
11	Щит	12	ЗЕМЛЯ
13	р	14	р
15	24B -	16	24B+

Рисунок 2.1

Источником питания шлюза G0310 MODBUS-HART является шина HART, а для связи 485 требуется внешний источник питания 24V. Рекомендуется кабель TP, и он должен улучшить способность устройства противостоять электромагнитным помехам. Схема подключения шлюза G0310 MODBUS к HART показана н а рис. 2.2 :

Рисунок 2.2 G0310 Схема подключения шлюза MODBUS к HART

2.2 Конфигурация перемычки

G0310 Шлюз MODBUS-HART имеет 2 перемычки, как показано на рис. Рисунок 2.3. левый – настройка тока предупреждения об отказе, а правый – перемычка настройки защиты конфигурации.

MICROCYBER-

• Установка перемычки предупреждения о сбое

Шлюз G0310 MODBUS-HART имеет функцию самодиагностики. При обнаружении отказа интеллектуальный прибор автоматически выдает предупреждающий ток. Предупреждающий текущий режим определяется JP1 Low. (зеленым цветом) слева от кабана, как показано на рисунке 2.3. Когда нет вставки или вставки двух точек снизу, это предупреждение высокого уровня (ток предупреждения ≥ 21,75 мА); когда это вставка двух точек вверху, это предупреждение низкого уровня (ток предупреждения). ≤ 3,7 мА).

• Установка перемычки защиты конфигурации

Шлюз G0310 MODBUS-HART обеспечивает установку перемычки защиты конфигурации устройства с помощью JP1 WrD (красного цвета), как показано на рисунке 2.3. Когда это вставка двух точек вверх, это защита конфигурации. В данный момент изменение конфигурации устройства не допускается. Допускается при отсутствии вставки или вставки двух точек снизу.

Рисунок 2.3 G0310 Перемычка шлюза MODBUS-HART

Фиксированный выход насыщения (настройка производителя, без конфигурации)

Когда работает интеллектуальный прибор HART, он постоянно сравнивает PV и верхнее и нижнее предельное значение диапазона. Когда PV превышает предел, прибор будет выводить фиксированный ток. Когда PV выше верхнего предела, на выходе 20,8 мА; когда PV ниже верхнего предела, на выходе 3,8 мА.

2.3 Сопротивление внутренней нагрузке

Клеммы 13 и 14 соединяют внутреннее сопротивление нагрузки 250 Ом, которое не связано с внутренней цепью. Пользователь может использовать внутреннее сопротивление нагрузки для замены сопротивления в Рисунок 2.2. Затем модем HART можно подключить к клеммам 13 и 14.

2.4 Повторная калибровка

Пользователи могут выполнить повторную калибровку шлюза G0310 Modbus to HART в испытательной лаборатории или на месте установки, прежде чем он будет введен в эксплуатацию. Процесс работы показан на рисунке 2.4.

G0310 Modbus to Hart предназначен в основном для функциональной проверки. Пожалуйста,

обратитесь к соответствующей главе ниже для конкретной проверки.

Chapter 3 Принцип работы

Шлюз G0310 MODBUS-HART поддерживает 4 динамические переменные, 6 переменных устройства. Через регистр MODBUS данные, выбранные устройством MODBUS, настраиваются на переменные устройства шлюза G0310 MODBUS-HART, а затем выполняется преобразование переменной устройства в динамическую переменную, в качестве выхода устройства, поддерживающего выход аналогового сигнала 4 ~ 20 мА. G0310 Функциональная блок-схема шлюза MODBUS-HART показана на рисунке 3.1 :

Рисунок 3.1 G0310 Функциональная блок-схема шлюза MODBUS-HART

Chapter 4 Дерево меню

Рисунок 4.1 дерево меню

Chapter 5 Конфигурация передатчика _ _

5.1 Топологическое соединение

Режим соединения преобразователей НАКТ можно разделить на двухточечное

соединение и многоточечное соединение.

• соединение точка-точка

Рисунок 5. 1HART Двухточечное соединение

- Особенности :
 - 1) Е го можно подключить к верхней системе управления через входной модуль AI и л
- И HART. устройство связи;
 - 2) Смешение аналоговой и цифровой связи;
 - 3) Адрес устройства 0.
- многоточечное соединение

HART field device

Функции:

1) Подключен к верхней системе управления через коммуникационное устройство HART ;

2) Используйте только цифровые возможности системы HART, ток фик

сируется на уровне 4 мА;

3) Поддержка до 15 устройств в формате короткого адреса.

5.2 Инструмент конфигурации

MICROCYBER

5.2.1 Установка и активация

Программное обеспечение для ПК G0310 спроектирован о и разработано Microcybe, метод установки показан ниже:

1. Сначала дважды щелкните, чтобы установить установку, как показано на Рисунок 5.3 :

Рисунок 5.3 настраивать

2. Нажмите «next» на странице установки, как показа

но на рисунке 5.4 :

:

- Рисунок 5.4 м о н т а ж
- 3. Выберите путь установки, как показано на рисунке 5.5

Рисунок 5.7 установлен

Значок HARTMPT появится на рабочем столе после заве

ршения установки, как показано на рисунке 5.8:

Рисунок 5.8 программное обеспечение для ПК

После завершения установки он переходит непоср

едственно в систему, как показано на рисунке 5.9:

K Hart Mass Production Tool File(F) View(V) Device(D) Window	(W) Setting(5)	Help(H)			-	
1 2 2 2						
US8 Serial Port (COM3)	List PV Scar	n				
	Poling	Tag	Manufacturer Typ	e Date		
ady						

5.2.2 Введение функций главной страницы

Инструмент конфигурации можно запустить, выполнив ярлык этого программного обеспечения на рабочем столе или в меню «Пуск». После запуска инструмента настройки интерфейс и основные окна отображаются на Рисунок 5.10.

Hart Mass Production Tool						
File() View() Device() W	Vindow(<u>W)</u> Setting(<u>S</u>) He	PED (1)				
1 🚯 😫 🚳	0					
USB Serial Port (CC)	List PV Scan				 	1
- 25						Field Device Mafunction
	Polling Tag	Manufacturer	Туре	Date		Configuration Changed
						Cold Start
						More Status Available
						Primary Variable Analog Out
						Primary Variable Analog Out
3		(4)				Non Primary Variable Out o
						Primary Variable Out of Limb
						No Communication Error
						Vertical Party Error
						Overrun Error
						Framing Error
						Longitudinal Party Error
						Beserved
						Buffer Overflow
						Undefined
Pandu P						Reigina di
neauy						

Рисунок 5.10 Основной интерфейс

1	Строка меню	2	Панель инструментов
3	Сетевой вид	4	Табличный вид
5	Тревожное окно	6	Статус бар

Ниже описаны функции каждой части.

MICROCYBER

і. Строка меню

• Flie(F)

Пользователь выполняет меню «File» → «exit» или нажимает кнопку закрытия в правом верхнем углу окна для выхода из средства настройки.

Выполните меню «File» → «exit» или нажмите кнопку закрытия в правом верхнем углу окна, чтобы выйти из средства настройки.

View (V)

Пользователи могут вручную обновить или остановить обновление текущей вкладки, просмотрев функции «refresh» и «stop» в меню.

В меню просмотра также можно отображать и скрывать окна сигналов тревоги и отправлять команды.

Device (D)

По «on-line», «stop on-line» вы можете искать любые онлайн-устройства в сети. Чтобы использовать эту функцию, отмените «Отображать только онлайн».

Функция «Display only on-line», может быть настроена в представлении сети, отображать ли устройство не в сети. По умолчанию отображаются только онлайн-устройства.

View (V)

Вы можете указать, следует ли скрывать панель инструментов и строку состояния.

Setting (S)

Меню выполнения «Settings» → «language» настраиваемый язык инструмента конфигурации, в настоящее время поддерживается китайский, английский.

Выполнить меню «set» → «serial port parameters» установить порт связи. Коммуникационный порт по умолчанию — последовательный порт 1 (COM1).

• Help (H)

установить порт связи. Коммуникационный порт по умолчанию — последовательный порт 1 (СОМ1).

ii. Панель инструментов

Как показано в На рис. 5.10 панель инструментов содержит четыре функции: поиск онлайн-устройств, остановка поиска устройств, обновление и прекращение обновления.

Рисунок 5.11 панель инструментов

«search online device», «stop search device», такие же, как «on line», «stop on line», подроб ности показаны в 5.2.2.1 Device (D).

Функция «Refresh» предназначена для обновления текущей вкладки вручную.

Функция «Stop Refresh» предназначена для прекращения обновления действия.

ііі. Сетевой вид

представление сети содержит список сетей и устройств.

Узел последовательного порта в представлении сети СОМ1 представляет собой средство настройки,

подключенное к сети HART через последовательный порт COM1.

В строке меню нажмите «device» \rightarrow «only online devices», чтобы отменить «only online devices». В этот момент в сети отобразятся 16 неподключенных устройств, расположенных в порядке опроса адресов.

Значок устройства, не включенного в список, отображается серым цветом, значок подключенного к сети устройства — желтым, а значок устройства мерцает при поиске.

Рисунок 5. 1216 автономных устройств

iv. Табличный вид

Различные вкладки появляются в зависимости от узлов, выбранных в представлении сети.

Когда выбран узел последовательного порта, отображается список устройств и вкладка сканирования основных переменных.

При выборе любого узла устройства отображаются соответствующие вкладки устройства, такие как основная информация, информация о конфигурации, конфигурация датчика, текущая калибровка и специальные команды.

v. Тревожное окно

Через это окно пользователи могут просматривать некоторые особые состояния текущего устройства. Окно тревоги соответствует только последнему правильно доступному устройству.

vi. Статус бар

Отображает состояние текущей операции в соответствии с операцией.

5.3 Основные операции

і. Настроить последовательный порт

При запуске коммуникационным портом по умолчанию является последовательный порт 1. Если последовательная линия пользователя не подключена к последовательному порту 1 или последовательный порт 1 занят или поврежден, последовательный порт необходимо сбросить.

После запуска, если пользователь не работает, инструмент настройки не будет автоматически отправлять какие-либо команды на последовательный порт.

MICROCYBER

ОК
Cancel

Рисунок 5.13 настройка последовательного порта

Настройте диалоговое окно последовательного порта, как показано на рисунке 5.13. В списке может быть указан последовательный порт, доступный на текущем компьютере. После того, как пользователь выберет целевой последовательный порт, нажмите кнопку ОК, чтобы настроить, установить успешную или неудачную операцию и получить оперативную информацию. Нажмите кнопку Отмена, чтобы выйти из окна.

Если настройка последовательного порта не удалась, выберите еще раз. Сбой настройки последовательного порта, невозможно выполнить операцию связи.

ii. Сканирование устройства

Инструменты настройки поддерживают доступ пользователей только к онлайн-устройствам, поэтому вам нужно запросить, какие устройства в данный момент подключены к сети. Методы запросов можно разделить на три категории:

- (1) Поиск одного узла: по адресу опроса целевого устройства определить, находится ли указанное устройство в сети;
- (2) Полный поиск: поиск всех устройств с адресами опроса от 0 до 15.
- (3) Пользовательский поиск: поиск указанного адреса устройства.

Если устройство подключено к сети, на вкладке списка устройств в представлении сети и представлении вкладок отображается краткая информация об устройстве.

Методы поиска по одному узлу:

Щелкните правой кнопкой мыши на последовательном узле сетевого представления и выберите «single node» → и л и « node ». (например: узел 0).

Рисунок 5.14 Удобное меню поиска правой кнопкой мыши

Полный поиск :

Щелкните правой кнопкой мыши на последовательном узле сетевого представления и выберите «Full Search» (например, COM1).

Пользовательские методы поиска :

Так как в сетевом представлении по умолчанию отображаются только онлайн-устройства, поиск нельзя настроить. Чтобы использовать пользовательский поиск, отмените только онлайн-устройство.

В строке меню нажмите « устройство » → «only online device». отменить только онлайн-функции.

Рисунок 5.15 выбор устройства

На данный момент в представлении сети будет отображаться 16 устройств с адресами (серые значки).

После выбора устройства, которое необходимо найти, нажмите «Поиск онлайн-устройства» нажмите в строке меню «device» → «online».

🊺 или

В процессе поиска вы можете нажать «Остановить поиск устройства» [№] (или →«stop online» в строке меню «device»), чтобы прервать текущий поиск.

Устройство в сети имеет желтый значок, чтобы отличить серый значок без сетевого адреса.

Именование устройств в сети: метка устройства +@+ адрес опроса устройства.

ііі. Отправить команду

Нажмите «view» → «send command» в строке меню для просмотра команд отправки и вызова окна команды отправки, как показано на рис. 5.16.

С помощью этой функции пользователи могут отправлять все поддерживаемые общие команды НАRT, общие команды поведения, специальные команды.

Отправляемые данные должны быть шестнадцатеричными.

Send Command	×
Polling O Data will be sent	Command
	*
Send Clean	Cancel
Respond Code	
Received data	*
	*

Рисунок 5.16 отправить команду

Отправка команд требует понимания формата кадра каждой команды, поэтому она применима только к опытным пользователям и персоналу отдела исследований и разработок.

iv. Многоязычная поддержка

Инструмент настройки выберет соответствующий языковой пакет в соответствии с языковыми настройками текущей операционной системы при первом запуске, чтобы у пользователя не было языкового барьера. Если пользователь хочет использовать другие языки, вы можете выбрать поддерживаемый язык в настройках языка, как показано на рис. 5.17.

Language Setting	X
Choose a language:	ОК
English 👻	Cande

Рисунок 5.17 Языковые настройки

5.4 Работа устройства

і. список устройств

На вкладке списка устройств отображается сводная информация обо всех найденных онлайн-устройствах. например: адрес опроса, метка устройства, производитель, тип устройства, заводская дата и т. д.

Способ 1 для входа на вкладку «Список устройств»:

После поиска онлайн-устройства восстановление по умолчанию отображает вкладку со списком устройств.

MICROCYBER-

ii.

Способ 2 для входа на вкладку «Список устройств»:

- (1) Щелкните левой кнопкой мыши в последовательном узле представления сети (например: COM1), в представлении правой вкладки отображается последовательный порт, подключенный к сети, и вся информация о вкладках, связанных с онлайн-устройствами.
- (2) Щелкните «device list» на правой вкладке, и, если информация будет получена успешно, отобразится сводная информация обо всех найденных онлайн-устройствах, как показано на рис. 5.18.

Hart Mass Production Tool File(E) View(V) Device(D) Window(W) Settin	g(<u>S)</u> Help(<u>H</u>)					
🎶 🐹 🖉 🔕						
USB Serial Port (COM4)	List PV Scar	1				
	Polling	Tag	Manufacturer	Туре	Date	
	0	TAG00000	Microcyber Inc.	MH105/G0310/	2007-11-9	
Error: Command is not implemented.	-					
P		18 Вклал	іка «Спи		ойств»	

Мониторинг основных переменных

О н показывает кривую тренда для всех основных переменных онлайн-устройств. Поперечная ось времени, продольная числовая ось могут быть скорректированы.

Способ входа на вкладку сканирования основной переменной:

- (1) Щелкните левой кнопкой мыши в последовательном узле представления сети (например: COM1), в представлении правой вкладки отображается последовательный порт, подключенный к сети, и вся информация о вкладках, связанных с онлайн-устройствами.
- (2) Нажмите «main variable Monitoring» на правой вкладке, как показано на рис. 5.19.

MICROCYBER-

K Hart Mass Production Tool	
File(E) View(V) Device(D) Window(W) Setting(S)) Help(H)
🔉 😒 😂	
ISB Serial Port (COM4) □ □ □ □ □ □ TAG00000@Polling 0	List PV Scan 100.0 78.0 56.0 56.0 34.0 56.0 12.0 15.18.11 15.18.19 15.18.31 15.18.19 15.18.31 15.18.19 15.18.31 15.18.19 15.18.25 15.18.19 15.18.25 10.00 15.18.25 10.01 15.18.25 10.02 15.18.25 10.03 15.18.25 10.04 Time 10.00 101.03
	Node0 0.00000 kPa Node6 Node12 Node1 Node7 Node13 Node2 Node8 Node14 Node3 Node9 Node15 Node4 Node10 Poling: 0 Node5 Node11 Reading data, please wait: 90%
No Command Specific Errors	
Dura no C 4	

Рисунок 5.19 Вкладка мониторинга основных переменных

ііі. Базовая информация

Пользователи могут получать и настраивать базовую информацию об онлайн-устройствах.

Способ доступа к вкладке «Основная информация»:

- (1) Левая кнопка мыши щелкает подключенное к сети устройство в представлении сети, а правое представление вкладок отображает вкладки, связанные с устройством.
- (2) Нажмите «basic information» на правой вкладке, и, если информация получена успешно, отобразится основная информация об устройстве, как показано на рис. 5.20.

Config	CurrentAdj	Device Scan	Register address Set	tings in the devic	e variable overrun!
ransmitter :	Infomation				
Polling	0	•			Apply
Message	MANUFACTURE	D BY MICROCYBE	Alarm Type	High 👻	
Descrption	SMART INSTRUM	MENT	High Alarm Current	0.000	
Tag	TAG00000		Low Alarm Current	0.000	
Date	2007 / 11	/ 9	Write Protect	Disable	
Assembly	000000		Vendor ID	601E	
dentification	n		Revision		
Manufactur	er Microcyber In	ю.	Universal 7	a j	
Туре	MH105/G031	0/M0310	Device 1		
Device ID	10 10 4C		Hardware 1		
Unique ID	E1 88 10 10 4	4C	Software 1	.6	
	_	_		-	

Рисунок 5.20 Вкладка «Основная информация»

Вкладка «Основная информация» содержит следующую таблицу:

Функциональн	Следует ли	Примечания
ое описание	изменить	
Адрес	Да	адрес опроса, диапазон выбора 0~15
Сообщение	Да	До 32 символов
Описание	Да	До 16 указанных символов
Этикетка	Да	Максимальная длина 8 указанных
		символов
Дата	Да	С 1900 по 2155 год
Номер сборки	Да	Должно быть 6 знаков после запятой
Выбор	Нет	Отображение режима выбора аппаратной
будильника		сигнализации, «высокая тревога»/«низкая
		тревога»
Защита от	Нет	Отображение опций аппаратной защиты от
записи		записи, НЕТ "/" ДА"
ID	Нет	Код эмитента товарного знака,

производителей		шестнадцатеричный
Производитель	Нет	Показать название производителя
Тип	Нет	Тип устройства отображения
оборудования		
ID	Нет	Отображение идентификационного номера
оборудования		оборудования
Длинный адрес	Нет	Показать адрес длины устройства
Информация о	Нет	Отображение информации о версии, такой
версии		как программное обеспечение, аппаратные
		версии и т. д.

Как показано в приведенной выше таблице, информация о первых шести устройствах является изменяемой.

После изменения информации вы можете нажать кнопку « apply », чтобы загрузить информацию на устройство. Если загрузка не удалась, информация об устройстве восстановит содержимое, которое было правильно настроено в прошлый раз. Если вы откажетесь от модификации, не нажима

^{й т е} «применить», нажмите «apply», о н а отобразит последний правильно настроенный контент.

Если адрес или метка загружены успешно, имя узла устройства в левом представлении сети изменится.

iv. Информация о конфигурации

Пользователи могут получать и настраивать информацию о конфигурации сетевых устройств.

Способ доступа к вкладке «Информация о конфигурации»:

- (1) Левая кнопка мыши щелкает подключенное к сети устройство в представлении сети, а правое представление вкладок отображает вкладки, связанные с устройством.
- (2) Нажмите «configuration information» в правом представлении вкладки, и, если информация получена успешно, отобразится информация о конфигурации устройства, как показано на рисунке 5.21.

	Config	CurrentAdj	Device Scan	Register address Se	ttings in the (device variable overrun!	
Out	put			Sensor Info			
PV		0.000	kPa	Serial Num	FFFFFF		Apply
SV		0.000	not_used	Up Limit	200.000	kPa	
Cur	rent	4.000	mA	Low Limit	-200.000	kPa	
Per	cent	0.000	%	Span	2.000	kPa	
PV I	nfo			Range Settin	g		
Dur	mp	0.0	Sec	Set by curre	nt value:		
Uni	t	kPa		▼ Up Lir	nit		
Up	Limit	200.000	kPa	- I ow Li	mit		
Low	v Limit	0.000	kPa				
Fur	nction	linear 👻	-	PV Zero	Point		

Рисунок 5.21 Вкладка «Информация о конфигурации» Вкладка информации о конфигурации содержит следующую таблицу:

Функциональн	Следует ли	Примечания
ое описание	изменить	
PV	Нет	Первая переменная, главная переменная,
		фиксируется на давлении
СВ	Нет	Вторая переменная, привязанная к
		температуре
Текущая	Нет	Показать значение PV соответствует
стоимость		текущему значению при 4~20 мА
Процент	Нет	Отображение значения PV в процентах от

MICROCYBER

		текущего диапазона		
Значение	Да	Выберите от 0 до 32 в секундах		
демпфирования				
Единица	Да	Отображает единицы значения PV		
Ограничение	Да	Максимальный диапазон отображаемых		
диапазона		значений PV		
Диапазон	Да	Отображение нижнего предела диапазона		
		значений PV		
Передаточная	Да	Режим аналогового токового выхода		
функция		поддерживает линейный вывод и вывод		
		квадратного корня		
Серийный	Да	Серийный номер датчика, записываемый		
номер				
Верхний предел	Нет	Верхний предел диапазона измерения		
		датчика		
Нижний предел	Нет	Нижний предел диапазона измерения		
		датчика		
Минимальный	Нет	Датчик позволяет установить минимальный		
пролет		диапазон		

Информация о конфигурации в основном состоит из трех частей: выходная переменная, настройка РV и калибровка диапазона.

The output variables в основном показывают первую переменную (PV), вторую переменную (SV) и текущее значение в процентах. где первая переменная может отображать значение температуры, значение сопротивления и сигнал в милливольтах; вторая переменная представляет температуру холодного конца. Все четыре переменные доступны только для чтения.

PV setting в основном отображает тип значения PV, значение демпфирования, единицу измерения, верхний и нижний пределы диапазона, а также функцию пассивной или активной настройки верхнего и нижнего пределов диапазона и использует текущее значение для установки основной переменной функции нулевой точки. Параметр PV изменяет соответствующие 5 конфигурационных данных (тип значения PV, значение демпфирования, единица измерения, верхний и нижний пределы диапазона), информацию можно загрузить в устройство, нажав кнопку « apply».

Upper and lower limits of passive range:

Вручную измените значение верхнего или нижнего предела диапазона и нажмите кнопку приложения, чтобы загрузить информацию на устройство.

Set range upper and lower limits with current values:

«Range Upper Limit»: установите текущее значение PV устройства на верхний предел диапазона основной переменной.

«Range Limit»: установите текущее значение PV устройства на нижний предел основного диапазона переменных, который может одновременно изменить верхний предел.

Установите нуль основной переменной с текущим значением:

«Primary variable zero»: при нулевой температуре текущее значение PV устройства принимается в качестве нулевой первичной переменной.

MICROCYBER

Калибровка диапазона — это калибровка миграции диапазона. Необходимо измерить нулевое и полное значения диапазона и загрузить данные в прибор.

Операция выглядит следующим образом:

- (1) Выберите соответствующую точку калибровки (предел диапазона или верхний предел диапазона);
- (2) Получает текущее значение (нулевое или полное значение);
- (3) Нажмите кнопку Исправить;

v. Текущая калибровка

Пользователи могут откалибровать ток 4–20 мА и настроить фиксированный выходной ток на вкладке калибровки тока.

Способ входа на вкладку текущей калибровки:

- (1) Левая щелкает онлайн-устройство в представлении сети, а правая вкладка отображает вкладки, связанные с устройством.
- (2) Нажмите «current Calibration» на правой вкладке, и, если информация получена успешно, отобразится текущая функция калибровки, как показано на Рисунок 5.22.

Info	Config	CurrentAdj	Device Scan	Register a	ddress Settings	in the
Fi	xed Output					
	3.8m	nA 🔘 I	.6.0mA			
	© 4.0m	nA 🔘 2	20.0mA			
	© 8.0m	nA 🔘 2	21.0mA			
	12.0	mA 🔘 M	1anually send		mA	
			Fixed Current M	ode		
G	alibrate					
	🔘 Use s	standard ammet	er			
	🔘 Use s	standard 250 oh	m resistor			
	🔘 Use d	other standard r	esistance,value		Ω	
	Value		•			
	Adjust			(pply		

Рисунок 5.22 Вкладка Текущая калибровка

Текущие этапы калибровки следующие:

- (1) Схема подключения, необходимо подключить к выходной цепи у с т р о й с т в а последовательно с более чем пятью с половиной прецизионными амперметрами;
- (2) Установите адрес опроса устройства на 0, с м. базовую информацию о конфигурации, если адрес опроса равен 0, пропустите этот шаг;
- (3) Войдите на вкладку текущей калибровки;
- (4) Выберите «current value» как 4 мА, после того, как амперметр стабилизируется, введите показания амперметра в текстовое поле «adjust value», нажмите «apply»;

- (5) Выбирать "current value" как 20 мА, после того, как амперметр стабили з и р у е т с я , введите показания амперметра в текстовое поле «adjust value», нажмите «apply»;
- (6) Выберите «тcurrent value» пустым, чтобы выходной ток устройства рассчитывался в соответствии со значением PV.

Настройте текущий фиксированный выход:

Пользователь может настроить выход фиксированного тока на вкладке калибровки тока, ввести значение ф и к с и р о в а н н о г о тока выхода. в «fix current value» и нажмите «enter/exit fixed current mode», чтобы войти или выйти из режима фиксированного тока. В заголовке кнопки попеременно отображается «enter fixed current mode» и «exit fixed current mode», чтобы предложить пользователю выполнить операцию.

Примечания:

Калибровочный ток и функция выхода фиксированного тока могут быть обработаны только в том случае, если адрес опроса устройства равен 0, а другие адреса опроса находятся в полностью цифровом режиме связи, что приведет к появлению сообщения об ошибке «Ошибка выполнения команды».

vi. Переменный мониторинг

Основная функция вкладки мониторинга переменных заключается в регулярном обновлении всех динамических переменных выбранного устройства и отображении кривой тренда основной переменной текущего устройства. в настоящее время обновляются следующие переменные: значение PV, текущее значение, процентное значение и значение SV соответственно.

Способ перехода на вкладку устройства обновления:

- (1) левой кнопкой мыши на онлайн-устройстве в представлении сети, и правая вкладка отобразит вкладки, связанные с устройством.
- (2) Нажмите «Variable Monitoring» на правой вкладке, как показано на рисунке 5.23.

Рисунок 5.23 Вкладка "Мониторинг переменных"

5.5 Настройка параметров шлюза

5.5.1 Выбор режима

- (1) левой кнопкой мыши на онлайн-устройстве в представлении сети, и правая вкладка отобразит вкладки, связанные с устройством.
- (2) Нажмите «gateway configuration» на правой вкладке. Первый щелчок для запуска этой страницы требует чтения информации об устройстве. Время чтения около 1 минуты. После успешного получения информации отобразится функция настройки шлюза, как показано на рис. 5.24.

Config CurrentAdj	Device Scan Register	address Securigs in i	ne device variable	e overru		
libration	Detailed Setup					
.oli Trim	Normal Operation	Configuration Mod 🔻	Device \	/ariable:	Device Variable 0	•
Read Coils	Device Variable Assi	ignments	Sensors			
	PV:	Device Variable 0 🔻	Class:	Pressur	e	•
Read Discrete Inputs	SV:	Device Variable 1 🔻	Unit:	kPa		•
Write Single coil	TV:	Device Variable 2 🔻	USL:	200.000	0000	-
White bright con	QV:	Device Variable 3 🔻	151.	-200.00	0000	-
Register Trim	Modbus Variables:		LSL.			-
	Address:	1	Min Span:	2.00000	00	
Read Holding Regiters	Raud Date:	9600 -	URV:	200.000	0000	
	Data Bita	3000 +	LRV:	0.0000	00	
Write Mutiple Regiters	Data bits:					
	Parity:	NONE	Device Variable	•	[_
lecall Factory Trim	Stop Bits:	1 Stop Bits 🔹	Defa	ault Unit:	kPa	•
restore to default Factory	CRC Order:	Low-High Order 🔻	Modbus Functio	on Code:	READ HOLDING RE	•
restore to deridater detary	Frame Idle Timer:	4 Character Times 🔻	Register A	Address:	30001	
save as factory	Device Status:		Register Dat	ta Type:	Float 1032	•
	Registers Address:	10001	Ecolina	Eactory	1.000000	
restore to factory	Bit Pattarn:		Scalling	ractor.		
	PV Range		Upper Registe	er Type:	40001	
atch Download	PV Range Source:	Local 👻	Lower Registe	er Type:	50001	
Open File	PV Range Option:	Read and Write 👻				
Save to file	Register Data Type:	Float 10 3 2 👻				
				Ap	ply	

Рисунок 5.24 Конфигурация шлюза

- (3) Далее находим "detailed settings"->"operation mode", там два режим работы s, один и з н и х — «configuration mode», а другой — «operation mode». «configuration mode» может настроить экран так, что опция «operation mode» может установить только «factory reset».
- (4) Например, выберите «режим конфигурации», как показано на рис. 5.25.

Normal Operation Configuration Mod 🔻

Рисунок 5.25 Настройки режима работы

5.5.2 Калибровка масла С

Катушка чтения и записи, пользователь может выбрать «calibration» -> «coil» и с делать вход катушки чтением и записью.

Пример: прочитать катушку

 Нажмите «calibration» -> «coil» -> «Read coil» и появится всплывающее окно «Read coil», как показано на рисунке 5.26 :

Read Coils	×
Register Address:	
Length:	
ОК	CANCEL

- Рисунок 5.26 Чтение ввода катушки
- 2. В в е д и т е адрес регистра и значение длины, о б р а т и т е внимание, что диапазон

адресов регистров от 1 до 65536, диапазон длины от 1 до 16.

Register Address:	1
Length:	1

Рисунок 5.27 Чтение ввода значения катушки

3. Затем нажмите кнопку «ОК» и система подсказывает «read coil successfully».

寄存器地址:	1
长度:	1
	值:0
读	线圈成功。

Рисунок 5.28 прочитать подсказку об успехе катушки

5.5.3 Регистрация калибровки

Регистр чтения и записи, пользователь может выбрать поле «calibration» -> «register», чтение и запись

отдельных регистров.

Пример: чтение значения регистра

 Нажмите «calibration» -> «register» -> «read hold register», чтобы открыть всплывающее окно «register», как показано на рисунке 5.29 :

Register Trim		x
Register Address: Register Data Type:	•	
ОК	CANCEL	

Рисунок 5.29 Чтение ввода регистра

2. Введите адрес регистра и значение длины, о б р а т и т е внимание, что диапазон адресов

регистра составляет от 1 до 65536.

MICROCYBER

egister Trim	
Register Address:	1
Register Data Type:	Unsigned Char 0 👻
	CANCEL

Рисунок 5.30 Чтение входного значения регистра

3. Нажмите «OK», и система предложит «ead hold register success».

5.5.4 Заводские настройки сброса

5.5.4.1 Сброс к заводским настройкам

 Нажмите «calibration» -> «restore factory settings» -> «restore to factory default settings», появится всплывающее окно «Восстановить заводские настройки», как показано на рисунке 5.31 :

Recall Factory Trim	×
Would you like to rest	ore to default Factory setting
	•
ОК	CANCEL

- Рисунок 5.31 Восстановить заводские настройки по у м о л ч а н и ю
- 2. После выбора «Yes» в раскрывающемся списке нажмите «OK».

Рисунок 5.32 Восстановить вы 6 о р заводских настроек п о умолчанию

3. Система предложит «set up successfully», затем нажмет «ОК», чтобы завершить операцию.

Recall Factory Trim	×
Would you like to resto	re to default Factory setting
Succeeded in	the setting!
ОК	CANCEL

Рисунок 5.33 Возврат к заводским настройкам по умолчанию

5.5.4.2 Сохранить до заводских настроек

 Нажмите «calibration» -> «restore factory settings» -> «save to factory settings», появится всплывающее окно «save to factory settings», как показано на Рисунок 5.34 :

- Рисунок 5.34 Сохранить до заводских настроек
- 2. После выбора «Да» в раскрывающемся списке нажмите «ОК».

Recall Factory Trim	
Would you like to sa	ve as factory setting ?
Yes	•
	CANCEL
	CANCEL

Рисунок 5.35 Сохранить выбор заводских настроек

3. Система предложит «set up successfully», а затем нажмет «ОК», чтобы завершить операцию.

Recall Factory Trim	
Would you like to save	e as factory setting ?
Succeeded i	n the setting!
ОК	CANCEL

Рисунок 5.36 Сохранить заводские настройки

5.5.4.3 Сброс до заводских настроек

 Нажмите «calibration» -> «restore factory settings»->«restore factory settings», появится всплывающее окно «restore factory settings», как показано на рисунке 5.37 :

Recall Factory Trim	×
Would you like to save	e as factory setting ?
OK	CANCEL

Рисунок 5.37 Возврат к заводским настройкам

2. После выбора «Да» в раскрывающемся списке нажмите «ОК».

Рисунок 5.38 Вернуться к выбору заводских настроек

3. Система предложит «set up successfully», а затем нажмет «ОК», чтобы завершить операцию.

Recall Factory Trim	
Would you like to save as factory setting	<u>,</u> ,
Succeeded in the setting!	
OK	

Рисунок 5.39 Возврат к заводским настройкам

5.5.4.4 Назначение переменной устройства

2.

Настройка назначения параметров динамической переменной заключается в установке отношения отображения между переменной устройства и динамической переменной. В устройстве есть 6 переменных устройства, которые могут быть сопоставлены с 4 динамическими переменными в зависимости от потребности.

Например: сопоставьте основную переменную с переменной устройства 4.

 Выбираем "detailed design"->"device variable assignment» -> «device variable assignment», соответствующее выпадающему списку «main variable», как показано на рис. 5.40 :

Рисунок 5.41 Изменение переменных устройства

3. Нажмите «apply», чтобы сохранить настройки. Как показано на рисунке 5.42.

MICROCYBER-

	Conferentian Made and				-
Normal Operation		Device	Variable;	Device Variable 0	•
Device Variable Ass	gnments	Sensors			
PV:	Device Variable 4	Class:	Pressur	e	•
SV:	Device Variable 1 🔻	Unit:	kPa		-
TV:	Device Variable 2 💌	USL:	200.000	0000	
QV:	Device Variable 3 🔻	LSL:	-200.00	0000	
Modbus Variables					
Addreen	1	Min Span:	2.00000	00	
Audress;	-	URV:	200,000	0000	
Baud Rate:	<u>aenn</u>	IPV.	0.0000	00	
Data Bits:	8 Data Bits 🔹				
Parity:	NONE -	Device Variable	e	15	
Stop Bits:	1 Stop Bits 🔹	Def	ault Unit:	kPa	•
CRC Order:	Low-High Order 🛛 🔻	Modbus Function	on Code:	READ HOLDING R	E 🔻
Frame Idle Timer:	4 Character Times 🔻] Register	Address:	30001	
Device Status:		Register Da	ita Type:	Float 1 0 3 2	+
Registers Address:	10001	Scaling	Factor:	1.000000	
Bit Pattarn:	NONE	Unner Regist	er Tyne:	40001	
PV Range		opper regist	a type.		
PV Range Source:	Local 👻	Lower Regist	er Type:	50001	
PV Range Option:	Read and Write 🔻				
Register Data Type:	Float 1 0 3 2 🔹				
			Ap	ply	

Рисунок 5.42 Сохраните значение переменной устройства

5.5.5 Конфигурация переменной Modbus

Связь Modbus параметры настраиваются в соответствии со специфическими параметрами связи Modbus.

5.5.5.1 Адрес

 найдите «detailed design» -> «Modbus variable» -> поле ввода, соответствующее «address», как показано на рис. 5.43.

	Modbus Variables:		
	Address:	1	
Рисуно	(5.43Настр	ойки адрес	a Modbus

2. Введите измененное значение с диапазоном адресов от 1 до 255. Затем нажмите «Применить», чтобы сохранить измененное значение.

5.5.5.2 скорость передачи данных

 Выберите «detailed design» -> «Modbus variable»-> раскрывающийся список, соответствующий «baud rate», выберите значение скорости передачи, нажмите «Установить» и нажмите кнопку «Отправить». поддержка скорости передачи: 1200,2400,4800,9600,19200,35700,38400,57600.

Modbus Variables:			
Address:	1		
Baud Rate:	9600 🔹		
Рисунок 5.44 Выборско	рости пере	е дачи	Modbus

 Выберите значение, которое необходимо изменить, затем нажмите применять для сохранения измененного значения.

5.5.5.3 Биты данных

MICROCYBER-

 Выберите «detailed design» -> «Modbus variable»-> в раскрывающемся списке, соответствующем «data bit», выберите поддерживаемый номер бита данных 7 или 8 бит, как показано на Рисунок 5.45

Modb	us Variables:		
	Address:	1	
	Baud Rate:	9600	•
	Data Bits:	8 Data Bits	•

Рисунок 5.45 Выбор бита данных Modbus

2. Выберите значение, которое необходимо изменить, затем нажмите кнопку «Применить», чтобы сохранить измененное значение .

5.5.5.4 Калибровка

 Выберите «detailed design» -> «Modbus variable» -"calibrate" в соответствии с раскрывающимся списком, поддержка: нечетная проверка, четная проверка и отсутствие проверки, как показано на Рисунок 5.46

Modbus Variables:		
Address:	1	
Baud Rate:	9600	•
Data Bits:	8 Data Bits	•

Рисунок 5.46 Modbus Выбор калибровочных значений

2. Выберите значение, которое необходимо изменить, затем нажмите кнопку «Применить», чтобы сохранить измененное значение.

5.5.5.5 Стоповые биты

 Выберите «detailed design» -> «Modbus variable»-> раскрывающийся список, соответствующий «stop bit», стоповый бит можно выбрать как: 1 бит стоповый бит и 2 бит стоповый бит, как показано на Рисунок 5.47

Modbus Variables:		
Address:	1	
Baud Rate:	9600	•
Data Bits:	8 Data Bits	•
Parity:	NONE	•
Stop Bits:	1 Stop Bits	•

Рисунок 5.47 Выбор стоп-бита ModbusModbus

2. Выберите значение, которое необходимо изменить, затем нажмите применять для сохранения измененного значения.

MICROCYBER-

5.5.5.6 Порядок байтов CRC r

 Выберите «detailed design» -> «Modbus variable»-> раскрывающийся список, соответствующий «CRC byte order», проверка включает: низкий-высокий и высокий-низкий, как показано на рисунке 5.48.

Modbus Variables:		
Address:	1	
Baud Rate:	9600	•
Data Bits:	8 Data Bits	•
Parity:	NONE	•
Stop Bits:	1 Stop Bits	•
CRC Order:	Low-High Order	•

Рисунок 5.48 Выбор порядка байтов Modbus CRC

2. Выберите значение, которое необходимо изменить, затем нажмите кнопку «Применить». чтобы сохранить измененное значение.

5.5.5.7 Интервал кадра в ремени

 Выберите «detailed design» -> «Modbus variable»-> раскрывающийся список, соответствующий «frame interval time», диапазон времени интервала составляет 4 ~ 10, как показано на рисунке 5.49.

Рисунок 5. 49Modbus Количество выбранных кадровых интервало

2. Выберите значение, которое необходимо изменить, затем нажмите применять чтобы сохранить измененное значение.

5.5.6 Конфигурация состояния устройства

5.5.6.1 Адрес регистрации

 найдите «detailed design» -> «device status» -> поле ввода, соответствующее «register address», диапазон адресов регистра составляет 1 ~ 65536, как показано на рисунке 5.50.

Device Status:	
Registers Address:	10001

Рисунок 5.50 Выбор адреса регистрации

2. Введите значение, которое нужно изменить, затем нажмите применять чтобы сохранить измененное значение.

MICROCYBER-

5.5.6.2 Битовый режим

 Выберите «detailed design»->«device status»-> раскрывающийся список, соответствующий «Bit mode», диапазон битового режима составляет 1–16, как показано на рис. 5.51.

	Device S	tatus	:													
	Register	s Add	lress	: 10	00	1										
Рисунок 5.	51Вы	6 o	р	би	т	0	в	0	г	0	р	е	ж	и	м	а

2. Выберите значение, которое необходимо изменить, затем нажмите «Применить». для сохранения

измененного значения е.

5.5.7 Настройка диапазона PV

5.5.7.1 Источник диапазона PV

«PV range Source» указывает, является ли он местным .

 Выберите «detailed design» -> «PV range» в раскрывающемся списке, соответствующем «= PV range source», который включает в себя локальные и удаленные источники, как показано на рисунке 5.52.

'v Range		
PV Range Source:	Local	-

Рисунок 5.52 Выбор источника диапазона PV

2. Выберите значение, которое необходимо изменить, затем нажмите «Применить». чтобы сохранить измененное значение.

5.5.7.2 РV режим работы диапазона

Если «PV range Source» получен от устройства MODBUS, «PV range option» указывает, поддерживает ли диапазон операцию записи.

 Выберите «detailed design» -> «PV range». в раскрывающемся списке, соответствующем «PV range operating mode», который включает только чтение и чтение-запись, как показано на рисунке 5.53.

PV Range		
PV Range Source:	Local	•
PV Range Option:	Read and Write	•

Рисунок 5.53 Выбор режима диапазона PV

2. Выберите значение, которое необходимо изменить, затем нажмите «Применить», чтобы сохранить измененное значение.

5.5.7.3 Зарегистрировать типданных

Выберите «detailed design» -> «PV range» -> раскрывающийся список, соответствующий «register data type», режим включает только чтение и чтение-запись, как показано ниже:

 Выберите «detailed design» -> «PV range» -> раскрывающийся список, соответствующий «register data type», как показано на рисунке 5.54.

PV Range	2	
PV Range Source:	Local	-
PV Range Option:	Read and Write	•
Register Data Type:	Float 1032	•

Рисунок 5.54 Выбор типа данных регистра

2. Выберите значение, которое необходимо изменить, затем нажмите «Применить », Ч т о б ы

сохранить измененное значение.

5.5.8 Переменная устройства

Существует 6 переменных устройства по умолчанию: « device variable: 0», «device variable: 1», «device variable: 2», «device variable: 3», «device variable: 4», «device variable: 5». ". Когда система инициализируется, выберите «device variable: 0». После изменения переменной устройства в поле выбора «Детальный проект» -> «Переменная устройства» система автоматически обновляет соответствующие параметры.

Detailed Setup				
Normal Operation	Configuration Moc 🔻	Device Variable:	Device Variable 0	•

Рисунок 5.55 Выбор переменных устройства

Когда пользователь изменяет значение параметра переменной устройства и не нажимает « apply », система предлагает пользователю сохранить измененное значение параметра и нажимает «Yes», чтобы сохранить параметр. Нажмите «No», чтобы н е сохранять изменение параметра и, наконец, обновить выбранный параметр переменной устройства.

5.5.8.1 Тип

1. Выберите «detailed design» -> «Sensor» -> раскрывающийся список, соответствующий «Type», как показано на рисунке 5.56.

sensors		
Class:	Pressure	•
	6	

Рисунок 5.56 Выбор типа 2. Выберите значение, которое необходимо изменить, затем нажмите «Применить». чтобы

сохранить измененное значение.

5.5.8.2 Единица

 s выберите «detailed design» -> «Sensor»-> раскрывающийся список, соответствующий «Unit», как показано на Рисунок 5.57

Class:	Pressure	-
i		

Рисунок 5.57 Выбор единицы измерения

2. Выберите значение, которое необходимо изменить, затем нажмите применять для сохранения измененного значения.

5.5.8.3 Верхний предел диапазона датчика

 Выберите «detailed design» -> «Sensor»-> раскрывающийся список, соответствующий «Sensor range limit», как показано на рисунке 5.58.

Class:	Pressure	•
Unit:	kPa	+
USL:	200.000000	-

Рисунок 5.58 Верхний диапазон Выбор диапазона датчика

2. Введите измененное значение, затем нажмите применять для сохранения измененного значения .

5.5.8.4 Нижний предел диапазона датчика

 Выберите «detailed design» -> «Sensor»-> раскрывающийся список, соответствующий «Sensor range limit», как показано на рис. 5.59.

Class:	Pressure	•
Unit:	(kPa	•
USL:	200.000000	
LSL:	-200.000000	

Рисунок 5.59 Выбор нижней границы диапазона датчика

2. Введите измененное значение, затем нажмите применять для сохранения измененного значения.

5.5.8.5 Минимальный пролет

 Выберите «detailed design» -> «Sensor»-> раскрывающийся список, соответствующий «bottom span», как показано на рис. 5.60.

Class:	Pressure	-
Unit:	kPa	•
USL:	200,000000	
LSL:	-200.000000	
Min Span:	2.000000	

Рисунок 5.60 Выбор минимального пролета

2. Введите измененное значение, затем нажмите применить для сохранения измененного значения.

5.5.8.6 Ограничение диапазона

1. Выберите «detailed design» -> «Sensor»-> раскрывающийся список, соответствующий «range limit», как показано на рис. 5.61.

Class:	Pressure	•
Unit:	kPa	•
USL:	200.000000	
LSL:	-200.000000	
Min Span:	2.000000	
URV:	200.000000	

Рисунок 5.61 Выбор верхнего диапазона

2. Введите измененное значение, затем нажмите применять для сохранения измененного значения .

5.5.8.7 Нижний предел диапазона

 Выберите «detailed design» -> «Sensor»-> раскрывающийся список, соответствующий «lower range limit», как показано на рис. 5.62.

Class:	Pressure
Unit:	kPa .
USL:	200.000000
LSL:	-200.000000
Min Span:	2.000000
URV:	200.000000
LRV:	0.000000

Рисунок 5.62 Выбор нижнего предела диапазона

2. Введите измененное значение, затем нажмите применять для сохранения измененного значения е.

0.

5.5.8.8 Единица измерения по умолчанию с

 Выберите «detailed design» -> «Sensor»-> раскрывающийся список, соответствующий «default unit».

Jevice variable	2	
Default Unit:	kPa	•

Рисунок 5.63 Выбор единиц измерения по умолчанию

2. Выберите значение, которое необходимо изменить, затем нажмите применять для сохранения измененного значения.

5.5.8.9 Modbus функциональный код е

 Выберите «detailed design» -> «Sensor»-> раскрывающийся список, соответствующий « Modbus function code».

Device Variable		
Default Unit:	kPa	٠
Modbus Function Code:	READ HOLDING RE	•

- Рисунок 5.64 Выбор функционального кода Modbus
- 2. Выберите значение, которое необходимо изменить, затем нажмите кнопку «Применить», чтобы сохранить измененное значение .

5.5.8.10 Зарегистрировать адрес _

 Выберите «detailed design» -> «Sensor» -> раскрывающийся список, соответствующий «register address», как показано на рисунке 5.65.

Device Variable	s
Default Unit:	kPa 🔻
Modbus Function Code:	READ HOLDING RE 🔻
Register Address:	30001

Рисунок 5.65 Выбор адреса регистрации

2. Введите измененное значение, затем нажмите кнопку «Применить», чтобы сохранить измененное значение.

5.5.8.11 Зарегистрировать тип данных

 Выберите «detailed design» -> «Sensor»-> раскрывающийся список, соответствующий «register data type», как показано на рисунке 5.66.

	- 2
kPa	•
READ HOLDING RE	+
30001	
Float 1 0 3 2	•
	kPa READ HOLDING RE 30001 Float 1 0 3 2

Рисунок 5.66 Выбор типа данных регистра

2. Выберите значение, которое необходимо изменить, затем нажмите кнопку «Применить», чтобы сохранить измененное значение.

5.5.8.12 Масштабный коэффициент г

 Выберите «detailed design» -> «Sensor»-> раскрывающийся список, соответствующий «zoom factor», как показано на рис. 5.67.

Device Variable		
Default Unit:	kPa	•
Modbus Function Code:	READ HOLDING RE	•
Register Address:	30001	
Register Data Type:	Float 1 0 3 2	•
Scaling Factor:	1.000000	

- Рисунок 5.67 Выбор коэффициента масштабирования
- 2. Введите измененное значение, затем нажмите кнопку «Применить», чтобы сохранить измененное

значение.

5.5.8.13 Адреса регистров верхнего предела диапазона

 Выберите > раскрывающийся список, соответствующий «detailed design» -> «Sensor»->«range upper limit register address», как показано на рисунке 5.68.

Default Unit:	kPa	•
Modbus Function Code:	READ HOLDING RE	•
Register Address:	30001	_
Register Data Type:	Float 1 0 3 2	¥
Scaling Factor:	1.000000	
Upper Register Type:	40001	

Рисунок 5.68 Выбор адреса регистра верхнего предела диапазона

2. Введите измененное значение, затем нажмите кнопку «Применить», чтобы сохранить измененное значение .

5.5.8.14 Адреса регистров нижнего предела диапазона

 Выберите «detailed design» -> «Sensor»-> раскрывающийся список, соответствующий «ange lower limit register address», как показано на Рисунок 5.69

Device Variable	
Default Unit:	kPa 🔻
Modbus Function Code:	READ HOLDING RE 🔻
Register Address:	30001
Register Data Type:	Float 1 0 3 2 🔹
Scaling Factor:	1.000000
Upper Register Type:	40001
Lower Register Type:	50001

Рисунок 5.69 Диапазон Выбор адреса регистра нижнего предела

2. Введите измененное значение, затем нажмите кнопку «Применить», чтобы сохранить измененное значение .

 $\sim 35 \sim$

Chapter 6 Быстрая конфигурация

Шаг 1 установите «operation mode» на «Configuration mode». См. подраздел 5.5.1.

- Шаг 2 установите параметр «device variable assignment», установите отношение отображения между переменной устройства и динамической переменной, устройство имеет 6 переменных устройства, которые могут быть сопоставлены с 4 динамическими переменными в соответствии с требованиями. См. подраздел 5.5.5.
- Шаг 3 установите параметры «Modbus communication»: в соответствии с конкретными параметрами связи для настройки параметров связи Modbus. Элементы конфигурации включают в себя: адрес, скорость передачи данных, бит данных, режим проверки CRC, стоповый бит и т. д. См. подраздел 5.5.6.
- Шаг 4 установить параметр состояния устройства. Этот шаг является необязательным, если в устройстве Modbus есть регистр состояния устройства, вы можете использовать этот шаг для настройки, в противном случае вы не можете настроить. Параметр состояния устройства содержит адрес регистра и битовый режим, где адрес регистра указывает местоположение регистра состояние устройства, в то время как битовый режим указывает, какие биты состояния используются, каждый из которых представляет состояние устройства, используя набор 1 и неиспользуемый набор 0. См. подраздел 5.5.7.
- Шаг 5 Установите параметр «PV range»: содержит «PV range source», «PV range operation mode» и «register data type». «PV range source» указывает, исходит ли основной диапазон переменных из локального, и если он поступает из устройства Modbus, «режим работы диапазона PV» указывает, поддерживает ли диапазон операцию записи, а «register data type» указывает тип регистрационных данных. См. подраздел 5.5.8.
- Шаг 6 У с т а н о в и т е параметры переменных устройства, связанные с Modbus: включая адрес по умолчанию, адрес регистра переменной устройства, коэффициент масштабирования переменной устройства типа данных, адрес регистра верхнего и нижнего пределов диапазона и т. д. См. подраздел 5.5.9.

Chapter 7 Обслужи Вание

Нет.	Явления	Причина	Решение
1	Текуший выход равен 0	а. Сбой питания	а. Восстановить мощность
-	тепущии выход равен о	б. Обрыв цепи провода	б. Проверьте провод
2	Выходной ток за	Отказ между устройством MODBUS и	
2	пределами предела	цепью	
3	Ток стабилен на уровне 4 мА.	Устройство в многоточечном режиме	Изменить адрес дополнительного ПК в режиме одного ПК
1	4	а. Ошибка подключения	а. Проверить проводку контура
4	пет соединения.	б. Многоточечный режим	б. Проверить сеть
	485 Питание 24 В	э. Сбой питания	а. Восстановить мощность
5		б. Обрыв цели провола	б. Проверьте провод
	выключен	в внутренний отказ	с.Обратитесь в службу технической
			поддержки
			а. Проверьте главное устройство HART и
14110		а. Нет связи по протоколу HART	модем HART.
6	6 горит	б. Сбой питания	б. Проверьте подключение к источнику
		в. Внутренний сбой	питания
			в. Связаться с техподдержкой
			а. Правильно подключите ведомое
		а.Подчиненное устройство без	устройство
7	485 индикатор связи не	подключения	b.Проверьте ведомое устройство и
· ·	горит	б. Сбой ведомого устройства	подключение
		в. Внутренний сбой	с.Обратитесь в службу технической
			поддержки

• Простое обслуживание

• Ежедневное обслуживание предназначено только для очистки устройства.

• Обслуживание при сбоях: Пожалуйста, верните на завод в случае сбоя.

Chapter 8 Техническая спецификация

а) Основной параметр

Объект измерения	Ведомое устройство Modbus RTU	
Власть	12 ~ 42V постоянного тока	
Шинный протокол	2-проводной, 4 \sim 20 мА+НАRT	
	0 ~ 1500 Ом (4 ~ 20 мА)	
Сопротивление нагрузки	230 \sim 1100 Ом (HART-связь)	
Напряжение изоляции	Интерфейс шины Modbus и HART, 500 В переменного тока	
Диапазон температур	-40°C∼85°C	
Диапазон смирения	5 ~ 95% относительной влажности	
Время начала	≤5 c	
Обновить время	0,2 c	
Регулировка демпфирования	Постоянная времени 0 ~ 32 с	

b) Индекс производительности

Уровень защиты	Степень защиты корпуса до IP 20		
ЭМС	Требования ЭМС к электрическому оборудованию для GB/T 18268.1-2010<Измерение, контроль и лаборатория> Часть 1: Требования к устойчивости к помехам для промышленных помещений в общих требованиях Методы испытаний портов HART Требования к электромагнитной совместимости для электрического оборудования GB/T 18268.23-2010<Измерения, контроль и лаборатория> Часть 23: Конфигурация испытаний, рабочие условия и критерии производительности для особых требований со встроенными или удаленными датчиками формирования сигнала		

с) Физическая производительность

Масса	0,2 кг
	Корпус: полиамид РА6.6
Материал конструкции	Покрытие: полиэфирная эпоксидная смола

d) Параметр связи по умолчанию

Адрес подчиненной станции	1		
Скорость передачи данных	9600		
Биты данных	8		
Стоповые биты	1		
Проверить	ДАЖЕ		
СRСпроверить	Младший байт заранее		

e) Поддерживаемый функциональный код Modbus

1	статус цикла чтения
2	чтение состояния дискретного входа
3	читать сохраняя значение регистра
4	прочитать значение входного регистра
5	цикл записи
16	записать несколько значений регистра

Chapter 9 Приложение 1 G0310 Выбор модели шлюза MODBUS для HART

	G03	10	Modbus для шлюза HART					
			код кода		Аппаратный интерфейс			
Список выбора типа		R4(n		R4(можно опустить)		PC485		
						код кода	Программный интерфейс	
					MR M	(можно опустить)	Ведущее устройство Modbus	
	GC)310-(R4-I	MRM)—— Прі	имер выбора				

Microcyber Corporation

http://www.microcybers.com Адрес: 17-8 Wensu Street, Hunnan New District, Shenyang, China 110179 Тел: 0086-24-31217278 / 31217280 Факс: 0086-24-31217293 Электронная почта: sales@microcyber.cn