

NCS-FI105 Преобразователь "Fieldbus–ток" Руководство по эксплуатации

MICROCYBER

предупреждать

- Передатчик должен быть установлен в сухом месте, и дождевая вода не должна смывать его. В неблагоприятных условиях следует использовать корпус преобразователя.
- 2. Пользователям запрещается самостоятельно разбирать передатчик.
- 3. / огнеопасной атмосфере, когда он находится под напряжением.
- 4. Пожалуйста, проверьте, соответствует ли напряжение питания передатчика требованиям к напряжению питания, указанным в руководстве пользователя.
- 5. Внешний винт заземления передатчика должен быть надежно соединен с землей.

Версия: V2.0

отказ от ответственности

Содержимое данного руководства было проверено для подтверждения соответствия описанного аппаратного и программного обеспечения. Поскольку ошибки нельзя полностью исключить, нельзя гарантировать и абсолютную согласованность. Тем не менее, мы будем регулярно проверять данные в этой брошюре и вносить необходимые исправления в последующие издания. Любые предложения по улучшению приветствуются.

Корпорация Микрокибер 2016

I

Профиль компании

Місгосуber Corporation — высокотехнологичное предприятие, основанное Шэньянским институтом автоматизации Китайской академии наук и занимающееся в основном разработкой, производством и применением сетевых систем управления, промышленных коммуникаций и инструментов. Місгосуber осуществил ряд крупных национальных проектов в области науки и техники, национальный план исследований и разработок в области высоких технологий (план 863), проект по разработке интеллектуального производственного оборудования и другие проекты национального плана в области науки и техники, а также является вспомогательным подразделением для строительства Национальный центр инженерных исследований сетевых систем управления.

Компания Microcyber успешно разработала первый отечественный мастер-стек протоколов fieldbus, прошедший международную сертификацию, первый прибор fieldbus, прошедший национальную сертификацию, и первый отечественный прибор безопасности, прошедший немецкую сертификацию TüV, совместно с другими подразделениями. первый отечественный промышленный стандарт протокола Ethernet EPA, первый промышленный стандарт протокола беспроводной связи WIA-PA и стал международным стандартом IEC.

Продукция и технологии Microcyber завоевали две вторые премии Национальной премии в области науки и техники, одну Национальную премию в области науки и технологий за изобретения, одну первую премию Китайской академии наук в области научно-технического прогресса, одну первую премию провинции Ляонин. Technology Progress Award, и ее продукция экспортируется в Европу и США.В развитых странах ведущие компании отрасли, такие как Emerson в США, Rotork в Соединенном Королевстве и Bifold в Соединенном Королевстве, приняли ключевые технологии Bowei. или ключевые компоненты своих продуктов и успешно завершили более 200 крупномасштабных проектов по автоматизации.

Microcyber является членом организации FCG, членом организации пользователей Profibus (PNO).

Місгосуber успешно прошла сертификацию системы менеджмента качества ISO9001:2008 и сертификацию системы качества ISO/TS16949 для автомобильной промышленности. Превосходная команда разработчиков, богатый опыт проектирования и внедрения систем автоматизации, ведущие в отрасли продукты, обширная рыночная сеть и превосходная корпоративная культура заложили прочную основу для предпринимательства и устойчивого развития компании. Несение идеалов сотрудников, создание ценности для клиентов и содействие развитию предприятия.

Несение идеалов сотрудников, создание ценности для клиентов и содействие развитию предприятия.

Оглавление

Глава 1. Обзор 1
Глава 2. Установить
2.1 УСТАНОВКА ПЕРЕДАТЧИКА
2.2 Проводка
Глава 3. Принцип работы и структура8
Глава 4. Тюнинг на месте10
4.1 Инструкция по эксплуатации магнитного стержня10
4.1.1 Общий метод регулировки11
4.2 Полевая калибровка преобразователя типа FF
4.2.1 Отображение измеренного значения 13
4.2.2 Отображение ошибок
4.2.3 Этапы операции для установки номера канала - Режим 0214
4.2.4 Шаги операции коррекции нижнего предела - режим 1614
4.2.5 Шаги операции коррекции верхнего предела - режим 1714
4.3 Регулировка преобразователя типа РА на месте 15
4.3.1 Отображение измеренного значения 18
4.3.2 Отображение ошибок19
4.3.3 Операционные шаги для установки адреса шины - режим 13 19
4.3.4 Шаги работы с конфигурацией категории - режим 3219
4.3.5 Шаги операции для установки номера канала - режим 0220
4.3.6 Этапы операции для установки верхнего предела диапазона SP -
режим 1920
4.3.7 Этапы операции по установке нижнего предела диапазона SP - режим
18
4.3.8 Установите шаги работы агрегата SP – режим 23
4.3.9 Этапы операции по установке верхнего предела диапазона
аналогового вывода - режим 21
4.3.10 Этапы операции по установке нижнего предела диапазона
аналогового вывода – режим 20
4.3.11 Настроика шагов работы типа защиты от сбоя - режим 33
4.3.12 Этапы операции для установки типа линеаризации – режим 22 23
4.3.13 установка текущих шагов операции коррекции нижнего предела –
4.3. 14 установка шагов операции корректировки текущего верхнего предела
– режим 17
4.3.15 Этапы расоты для настройки интерфейса жк-дисплея — режим 3024
4.5. то Операционные шаги для настроики переключателя дисплея ЖК-интерфейса – режим 31
лих-иптерфенса – режим эт
ч.ч восстаповить дапные счетчика до заводских значении

Глава 5. F Конфигурация преобразователя F-типа	28
5.3.1 Среда конфигурации	
5.3.2 Двухточечная линейная калибровка	
5.3.3 Многоточечная линейная калибровка	
5.3.4 Конфигурация ЖК-дисплея	
Глава 6. Конфигурация преобразователя типа Р	36
6.3.1 Среда конфигурации	
6.3.2 Конфигурация параметра блока преобразования	39
6.3.3 Конфигурация циклической передачи данных PROFIBUS	
6.3.4 Конфигурация ациклической передачи данных PROFIBUS	42
6.3.5 Функция онлайн и оффлайн конфигурации	44
6.3.6 Двухточечная калибровка линеаризации	
6.3.7 Многоточечная калибровка линеаризации	46
6.3.8 Конфигурация содержимого ЖК-монитора	47
Глава 7. Поддерживать	49
Глава 8. Технические характеристики	51

Глава 1. Обзор

Передатчик NCS-FI105 представляет собой устройство , которое преобразует сигналы полевой шины в традиционные аналоговые величины, может принимать сигналы полевой шины и преобразовывать их в аналоговые сигналы 4-20 мА четырех каналов. FI105 представляет собой преобразователь между системой fieldbus и регулирующими клапанами или другими приводами.

В передатчике FI105 используется цифровая технология, которая упрощает интерфейс между полевым оборудованием и диспетчерской и может снизить затраты на установку, эксплуатацию и техническое обслуживание оборудования.

Передатчик FF представляет собой интеллектуальный прибор, соответствующий протоколу полевой шины FF, который может быть соединен с несколькими устройствами FF. В передатчике FF интегрировано множество функциональных модулей, которые могут реализовывать как общие функции управления , так и сложные стратегии управления.Пользователи могут выбирать различные функциональные блоки в соответствии с требованиями и конкретными прикладными средами для достижения различных функций.

Передатчик типа РА представляет собой интеллектуальный прибор, соответствующий протоколу Profibus PA, имеет хорошую совместимость и может быть интегрирован в любую систему DCS с возможностью связи Profibus.

Размеры преобразователя FI105 показаны на рисунке ниже:

Рисунок 1.1 _ _ Размеры преобразователя (единица измерения: мм)

Структура преобразователя FI105

Рисунок 1.2 _ _ Структура передатчика

1	Передняя	2	уплотнительное	3	Витрина футляр для	4	ЖК-дисплей карты
	крышка		кольцо		карт		
5	позиционный	6	круглая карта	7	карта захвата	8	Изоляционная карта
	пост						
9	портовая	10	винт	11	Свинцовое отверстие	12	винт
	карта						
13	табличка с	14	Кнопка Z/X	15	Электронный корпус	16	клеммная колодка
	именем						
17	задняя	18	Нижняя крышка				
	обложка						

Глава 2. Установить

2.1 Установка передатчика

Для установки преобразователя FI 105 доступны три типа монтажных кронштейнов: плоский кронштейн для монтажа на трубе, изогнутый кронштейн для монтажа на трубе и изогнутый кронштейн для монтажа на панели. Соответственно, существует три метода установки: установка плоской трубы кронштейна, установка изогнутой панели кронштейна и установка изогнутой трубы кронштейна, установка изогнутой панели кронштейна и установка изогнутой трубы

Типичный метод установки трубы с плоским кронштейном показан на рисунке 2.1 . Используйте 4 прилагаемых болта, чтобы закрепить датчик на плоском кронштейне, смонтированном на трубе, а затем используйте U-образные болты, чтобы закрепить плоский кронштейн, смонтированный на трубе, на вертикальной трубе вокруг 50mmФ.

Типичный способ установки панели с изогнутым кронштейном показан на рис. 2.2 . Используйте 4 прилагаемых болта, чтобы закрепить преобразователь на кронштейне, установленном на чаше, а затем прикрепите кронштейн, установленный на чаше, к циферблату с помощью болтов М10 (подготовленных пользователем).

Типичный способ установки изогнутой опорной трубы показан на рис. 2.3 и рис. 2.4 . Используйте 4 прилагаемых болта, чтобы закрепить преобразователь на кронштейне изгиба трубы, а затем прикрепите кронштейн изгиба трубы к 50mmгоризонтальной трубе вокруг Ф с помощью U-образных болтов.

Рисунок 2.1 _ _ трубка плоского кронштейна

Рисунок 2.2 _ Согните пластину кронштейна

Рисунок 2.3 _ Согните трубку кронштейна 1

2.2 Проводка

Источник питания и сигнал интеллектуального преобразователя FI105 используют пару кабелей, которые называются шинными кабелями. Рекомендуется использовать специальный кабель fieldbus, рекомендованный IEC 6 1158-2. Клеммы проводки интеллектуального преобразователя FI105 расположены сбоку на задней крышке, и клеммную колодку можно увидеть, когда задняя крышка отвинчена.

Рисунок 2.5 _ _ Схема клеммной колодки преобразователя FI 105

Рисунок 2.6 _ _ Схема подключения FI 105

Сигнальная линия подключается к клеммной колодке через подводящий провод, а экранирующий слой сигнальной линии датчика заземляется с одного конца.

Экранирующий слой сигнальной линии шины плавает со стороны прибора и обычно заземляется со стороны питания шины .

Сигнальные кабели и кабели шины не должны иметь общие кабелепроводы или открытые прорези для проводов с силовыми кабелями другого оборудования, и их следует прокладывать вдали от мощного оборудования.

Глава 3. Принцип работы и структура

Прибор NCS-FI105 преобразует сигнал полевой шины FF/PA в соответствующий сигнал тока (4 ~ 20 mA) после расчета и обработки .

NCS-FI105 в основном состоит из пяти частей, аппаратная структура показана на рис. 3.1.

- 1. Карта порта: используется для подключения шины, токового выходного сигнала, инструментальной карты и круглой карты.
- Инструментальная карта: преобразование цифрового сигнала, выводимого круглой картой, в текущий сигнал.
- Круглая карта: основной компонент интеллектуального прибора, обеспечивающий связь, управление, диагностику и функции обслуживания полевой шины FF/PA.
- 4. Изолирующая плата: в основном она обеспечивает изоляцию между круглой картой и платой прибора, включая изоляцию питания и изоляцию сигнала.
- 5. Панель ЖК-дисплея (дополнительно): обеспечивает отображение выходных данных и других функций отображения параметров функционального блока.

Рисунок 3.1 ___ Схема аппаратной структуры преобразователя FI 105

Рисунок 3.2 _ _ Блок-схема преобразователя FI 105

В качестве ядра передатчика FI105 круглая карта соответственно подключена к карте порта, изоляционной карте, инструментальной карте и карте ЖК-дисплея. ЖК-карта закреплена на круглой плате и может поворачиваться под четырьмя углами, см. рис. 3.3.

Схема структуры установки головки

Глава 4. Тюнинг на месте

4.1 Инструкция по эксплуатации магнитного стержня

FI 105 можно отрегулировать на месте, вставив различные комбинации магнитных стержней в два разъема с маркировкой "SPAN" и "ZERO" в верхней части электронного корпуса (под заводской табличкой), как показано на рис . 4.1.

Рисунок 4.1 _ _ Расположение разъема магнитного стержня и полноэкранного ЖК-дисплея

В следующих главах будут использоваться различные комбинации ввода магнитного стержня для имитации четырех виртуальных кнопок, что удобно для описания настроек на месте.

В соответствии с функциями четыре виртуальные клавиши могут быть определены как клавиша режима ([M]), клавиша регулировки ввода ([↑], [↓]) и клавиша подтверждения ([Enter]), и их функции следующие :

- Клавиша режима [М] : переключение между различными режимами работы;
- ♦ Клавиша регулировки ввода [↑]: операция приращения;
- ♦ Клавиша регулировки ввода [↓]: операция уменьшения;
- ♦ Клавиша подтверждения [Enter] : выполнить операцию подтверждения.

Как магнитный джойстик реализует работу клавиши режима, клавиши регулировки ввода и клавиши подтверждения:

клавиша режима ⁽¹⁾	Введите регулиро	• ключи овки ⁽¹⁾	Входить
[M]	[↓]	[↑]	[Ввести]_
Ноль и шкала	Охватывать	Нуль	Вставьте Zero и Span

вставляются в магнитный		одновременно на 2 секунды, затем
стержень одновременно		удалите (2)
(2)		

Уведомление:

- (1) Клавиша режима [М] и клавиши регулировки ввода ([↓], [↑]) вставка и извлечение магнитного стержня является ключевой операцией, и магнитный стержень также может быть вставлен в течение длительного времени для нормальной работы. При выполнении операции с клавишей рекомендуется вставлять ее на 1 секунду перед тем, как вытащить, иначе действие операции может быть не обнаружено. В режиме обычного нажатия клавишная операция выполняется автоматически каждую 1 секунду.
- (2) Во избежание конфликта между клавишей подтверждения и клавишей режима, когда выполняется операция подтверждения, когда индикатор выполнения достигает 100%, это указывает на то, что время вставки магнитного стержня достигло 2 секунд, и операция подтверждения завершена. выполняется при вытягивании двух магнитных стержней. Если магнитный стержень не вытягивается после того, как индикатор выполнения достигает 100% в течение 3 секунд, выполните операцию переключения режима. Индикатор выполнения не достигает 100%, вытащите две магнитные палочки, никаких действий.

4.1.1 Общий метод регулировки

Ниже приведен общий метод настройки, подробное описание каждой функции см. в подробном описании.

В режиме отображения измеренного значения нажмите клавишу режима [М] для переключения режимов.

Когда отобразится режим, который необходимо отрегулировать, выньте две магнитные палочки, и текущее значение значения, которое необходимо отрегулировать в этом режиме, отобразится на ЖК-дисплее.

Нажмите клавишу [↓] или [↑] для настройки, после настройки нажмите клавишу [Enter] для подтверждения.

Нажмите клавишу режима [М], чтобы переключиться обратно в режим отображения измеренного значения.

Уведомление:

1. Некоторые функции не требуют подтверждения и будут сохранены сразу после настройки.

2. Если ключ не используется в течение 1 минуты (в два отверстия не вставлен магнитный стержень), он автоматически вернется в нормальный режим отображения.

4.2 Полевая калибровка преобразователя типа FF

В этом разделе описывается только передатчик FF. Путем настройки на месте могут быть реализованы функции коррекции верхнего и нижнего пределов различных каналов передатчика FF.

Ниже описано, как использовать магнитный стержень для выполнения калибровки на месте Функции и основные операции калибровки преобразователя FF на месте показаны в таблице ниже.

A rrange	модель	Кл	ючевая функци	1Я	Функция		
Функция	[M]	[↓]	[↑]	[Ввести]	показывать	ООВЯСНЯТЬ	
Отображени е измеренного значения						Отображение информации о конфигурации блока отображения DSP	
отображение ошибок						ошибка! При сбое передатчика отображать текст причины сбоя	
номер канала	02	уменьшать	Увеличивать		Fun02 CH_x	Номер канала предварительной настройки х диапазон: 1~4	
коррекция нижнего предела	16	предустановка снижаться	предустановка Увеличивать	осуществлять	Веселье16 НИЖЕ	Настройка нижнего предельного значения характеристической кривой	

коррекция верхнего предела	17	преду сни	/становка Іжаться	апредустановка Увеличивать	осуществлять	Веселье17 ВЕРХНИЙ	Отрегулируйте верхний предел характеристической кривой
славишу режима [М] для переключения между вышеуказанными функциями							

Рисунок 4.2 _ _ Функция регулировки и ее ЖК-дисплей

В состоянии переключения режимов в области цифрового дисплея отображается код функции, например: «Fun02». В области текстового отображения отображается описание функции, как показано на рисунке выше, например: «CH_1». Среди них режим 02 не нуждается в подтверждении, и он будет сохранен сразу после настройки.

4.2.1 Отображение измеренного значения

Отображение информации о конфигурации блока отображения DSP, устройство не может быть изменено с помощью локальной операции.

Есть два способа вернуть отображение измерений:

- 1、 Переключить режим на «НОРМ»;
- Бездействия в течение 1 минуты (магнитный стержень не вставлен в два отверстия).

4.2.2 Отображение ошибок

Во время локальных операций могут появляться сообщения об ошибках.

показывать	объяснять
NumEr	Значение выходит за пределы отображаемого диапазона (-999999-999999)
FNErr	неверный номер режима
замок	Перемычка установлена на защиту конфигурации

4.2.3 Этапы операции для установки номера канала - Режим 02

Установите номер канала предварительной настройки, по умолчанию CH_1. Диапазон номеров каналов: CH_1-CH_4.

Вы можете установить номер канала следующим образом:

-Выберите режим 02, номер текущего канала будет отображаться в текстовой области;

-Используйте [↑] или [↓] для выбора канала ;

- Используйте [М] для переключения режимов.

Номер канала влияет на такие функции, как коррекция верхнего предела и коррекция нижнего предела. Для предварительной настройки вышеперечисленных функций сначала установите номер канала

4.2.4 Шаги операции коррекции нижнего предела - режим 16

В этом режиме можно изменить наклон характеристической кривой.

Характеристическая кривая вращается вокруг верхней точки уставки.

Скорректируйте измеренное значение до 4 мА.

Вы можете выполнить корректировку нижней границы следующим образом:

- Выберите режим 1 6. Отображение последнего настроенного значения;

-Используйте [↑] и [↓] для ввода измеренного значения тока;

-Нажимайте [↑] и [↓] одновременно для регулировки, пока индикатор выполнения не достигнет 100%, если регулировка прошла успешно, отобразится «ОК», если нет, отобразится «Err».

- Используйте [М] для переключения режимов.

4.2.5 Шаги операции коррекции верхнего предела - режим 17

В этом режиме можно изменить наклон характеристической кривой. Характеристическая кривая вращается вокруг нижней уставки. Скорректируйте измеренное значение до 20 мА.

Регулировка верхнего предела выполняется следующим образом:

- Установить режим 17. Отображение последнего настроенного значения;

-Используйте [↑] и [↓] для ввода измеренного значения тока;

-Нажимайте [↑] и [↓] одновременно для регулировки, пока индикатор выполнения не достигнет 100%, если регулировка прошла успешно, отобразится «OK», если нет, отобразится «Err».

- Используйте [M] для переключения режимов

4.3 Регулировка преобразователя типа РА на месте

Функции настройки, такие как шинный адрес передатчика РА и отображение измерительных каналов, могут быть реализованы посредством настройки на месте. См. таблицу ниже для конкретных функций и операций с клавишами.

	моде	Кпю	уевая функ	IIIIA	Функция	
Функция	ЛЬ	Tune	чевал функ	цил	показыва	объяснять
	[M]	[↓]	[↑]	[Входить]	ТЬ	
Отображен						0
ие						Отображает измеренное значение
измеренног						соответствующего канала
о значения						
отображен						ошибка! При сбое передатчика
ие ошибок						отображать текст причины сбоя
автобусный адрес	13	предустано вка снижаться	предустано вка Увеличиват ь	осуществл ять	Веселье1 3 АДРЕС	Адрес пользователя на PROFIBUS (0 126)
категория конфигурац ии	32	выбрать од вариа	цин из двух антов		Fun32 XXX_X	Установить категорию конфигурации XXX_X: SET_C (настройка параметров канала) или SET_L (настройка параметров жидких кристаллов)
номер канала	02	выби	ірать		Fun02 CH_x	Установить номер канала отображения x:1 , 2 , 3 , 4

верхний предел СП	19	предустано вка снижаться	предустано вка Увеличиват ь	осуществл ять	Beceльe1 9 SPUE1	Установить EUat100 в шкале PV_S канала CH_x
Нижний предел диапазона SP	18	предустано вка снижаться	предустано вка Увеличиват ь	осуществл ять	Веселье1 8 SPUE0	Установить EUat0 в шкале PV_S канала CH_x
Единица СП	двад цать три	предустано вка снижаться	предустано вка Увеличиват ь	осуществл ять	Fun23 СПЮНИ	Установите UnitIndex в кале PV_S канала CH_x
Верхняя граница диапазона АО	двад цать один	предустано вка снижаться	предустано вка Увеличиват ь	осуществл ять	Fun21 AOYЭ1	Установите EUat100 в Out_Scale канала CH_x
Нижняя граница диапазона АО	20	предустано вка снижаться	предустано вка Увеличиват ь	осуществл ять	Fun20 AOУE0	Установите EUat0 в Out_Scale канала CH_x
отказоусто йчивый тип	33	предустано вка снижаться	предустано вка Увеличиват ь	осуществл ять	Fun33 F_TYP	Установить FSafe_Type канала CH_x 0: использовать FSAFE_VALUE в качестве значения SP 1: Использовать доступное значение SP , сохраненное в последний раз 2: Привод использует положение безопасности, определенное ACTUATOR_ACTION.
Тип линеариза ции	двад цать два	выбирать		осуществл ять	Fun22 L_TYP	Установите тип линеаризации канала CH_x 0 : без линейной линеаризации 1 : пользовательская многоточечная калибровка
Текущая коррекция нижнего	16	предустано вка снижаться	предустано вка Увеличиват	осуществл ять	Веселье1 6 НИЖЕ	калибровка нижнего предела для канала CH_x

предела			Ь			
Текущая коррекция верхнего предела ЖК-интерф ейс	17 30	предустано вка снижаться выби	предустано вка Увеличиват ь	осуществл ять	Beceльe1 7 BEPXHИ Й Fun30 ЖК-дисп пей х	калибровка верхнего предела для канала CH_x Выберите ЖК-интерфейс x : 1-8
Переключа тель дисплея ЖК - интерфейс а	31	закрытие	включать		Fun31 LCD_S	Настройка переключателя дисплея LCD x _ 0: ВЫКЛ. 1: ВКЛ открыт
ЖК-интерф ейс отображает содержимо е	11	выбирать			Веселье1 6 ДИСП	Установите содержимое жидкокристаллического ЖК- дисплея х 1:CH1_SP (значение уставки АО1) 2: CH1_AO (выходное значение АО1) 3:CH1_FV(Окончательное_ значение ТВ1) 4: CH2_SP (значение уставки АО2) 5: CH2_AO (выходное значение АО2) 6:CH2_FV(Окончательное_ значение ТВ2) 7: CH3_SP (значение уставки АО3) 8: CH3_AO (выходное

После входа в настройку на месте нажмите кнопку режима [М], чтобы переключиться между вышеуказанными функциями настройки, как показано на рисунке 4.3.

Рисунок 4.3 Схема переключения функций регулировки

В состоянии переключения режимов в области цифрового дисплея отображается код функции, например: «Fun02». В области текстового отображения отображается описание функции, как показано на рисунке выше, например: « BEPX ». Среди них режимы 02, 11, 22, 30, 31, 32 и 33 не требуют подтверждения и сохраняются сразу после настройки.

4.3.1 Отображение измеренного значения

В функции отображения измеренного значения отображается измеренное значение, выбранное в режиме 11. Когда значение превышает диапазон ЖК-дисплея, оно будет отображаться в экспоненциальном представлении.

Возвращает метод отображения измеренного значения:

1. Переключить режим на «НОРМ»;

Бездействия в течение 1 минуты (магнитный стержень не вставлен в два отверстия).

4.3.2 Отображение ошибок

Во время локальных операций могут появляться сообщения об ошибках.

показывать	объяснять
NumEr	Числовое исключение
	неверный номер
ENEIL	режима
	Программное
замок	обеспечение
	защищено от записи

4.3.3 Операционные шаги для установки адреса шины - режим 13

В режиме 13 вы можете установить пользовательский адрес устройства в PROFIBUS. Допустимый диапазон от 0 до 126.

Установите адрес PROFIBUS следующим образом:

- Выберите режим 13. Текущий адрес пользователя появится в области

цифрового дисплея;

- Используйте [↑] и [↓] для изменения этого адреса в допустимом диапазоне;

- Нажмите [Enter] для установки, если настройка выполнена успешно, будет отображаться «ОК», если не успешно, будет отображаться «Err».

4.3.4 Шаги работы с конфигурацией категории - режим 32

В режиме 32 вы можете установить категорию конфигурации, SET_C

(параметры, относящиеся к каналу конфигурации) и SET_L (параметры,

связанные с каналом конфигурации) являются необязательными. После настройки категории настраиваемые параметры магнитной палочки изменятся в соответствии с настроенной категорией.

Установите класс конфигурации следующим образом:

- Выберите режим 32. Текущий тип конфигурации появится в текстовой

области ;

категории конфигурации в пределах допустимого диапазона ;

- Используйте [М] для переключения режимов.

тип конфигурации	описывать
SET_C	Настройте параметры , связанные с каналом
SET_L	Настройте параметры , связанные с каналом

4.3.5 Шаги операции для установки номера канала - режим 02

Установите номер канала, диапазон номеров каналов: CH_1-CH_4. После

установки номера канала другие параметры конфигурации являются содержимым конфигурации канала.

Вы можете установить номер канала следующим образом:

- Выберите режим 02, текущий номер канала будет отображаться в текстовой

области;

– Используйте [↑] или [↓] для выбора канала;

- Используйте [M] для переключения режимов.

4.3.6 Этапы операции для установки верхнего предела диапазона SP - режим 19

В режиме 19 вы можете установить значение переменной EUat100 в PV_Scale выбранного номера канала .

Установите следующим образом:

- Выберите режим 19. Значение переменной EUat100 в шкале PV_S текущего установленного номера канала появится в области цифрового дисплея ;

 Используйте [↑] и [↓] для изменения значения переменной EUat100 в допустимом диапазоне ;

-Нажмите [Enter], чтобы установить, если настройка прошла успешно, отобразится «ОК», если настройка не удалась, отобразится «Err»

4.3.7 Этапы операции по установке нижнего предела диапазона SP - режим 18

В режиме 18 вы можете установить значение переменной EUat0 в PV_Scale выбранного номера канала.

Установите следующим образом:

- Выберите режим 18. В области цифрового дисплея появится значение

переменной EUat0 в кале PV_S текущего установленного номера канала ;

значения переменной EUat0 в допустимом диапазоне ;

- Нажмите [Enter] для установки, если настройка выполнена успешно, будет отображаться «ОК», если не успешно, будет отображаться «Err».

4.3.8 Установите шаги работы агрегата SP – режим 23

В режиме 23 вы можете установить значение переменной UnitIndex в PV_Scale выбранного номера канала.

Установите следующим образом:

- Выберите режим 23. В области цифрового дисплея появится кодовое значение блока SP текущего установленного номера канала ;

значения кода единицы измерения в пределах допустимого диапазона;

- Нажмите [Enter] для установки, если настройка выполнена успешно, будет отображаться «ОК», если не успешно, будет отображаться «Err».

4.3.9 Этапы операции по установке верхнего предела диапазона аналогового вывода - режим 21

В режиме 21 вы можете установить значение переменной EUat100 в Out_Scale выбранного номера канала.

Установите следующим образом:

- Выберите режим 21. В области цифрового дисплея появится значение

переменной EUat100 в шкале Out _S текущего установленного номера канала ;

значения переменной EUat100 в пределах допустимого диапазона ;

- Нажмите [Enter] для установки, если настройка выполнена успешно, будет отображаться «ОК», если не успешно, будет отображаться «Err».

4.3.10 Этапы операции по установке нижнего предела диапазона аналогового вывода – режим 20

В режиме 20 вы можете установить значение переменной EUat0 в Out_Scale выбранного номера канала.

Установите следующим образом:

- Выберите режим 20. В области цифрового дисплея появится значение

переменной EUat100 в шкале Out_S текущего установленного номера канала ;

значения переменной EUat0 в допустимом диапазоне ;

- Нажмите [Enter] для установки, если настройка выполнена успешно, будет отображаться «ОК», если не успешно, будет отображаться «Err».

4.3.11 Настройка шагов работы типа защиты от сбоя - режим 33

В режиме 33 вы можете установить значение FSafe_Type выбранного номера канала, эта опция может быть 0, 1, 2 три дополнительных значения.

Установите следующим образом:

- Выберите режим 33, значение FSafe_Туре текущего канала будет отображаться в области цифрового дисплея ;

- Используйте [↑] или [↓] для выбора канала;

- Используйте [М] для переключения режимов.

отказоустойчивый тип	описывать
0	Использовать FSAFE_VALUE в качестве значения SP

1	Использовать последнее сохраненное
1	доступное значение SP
2	Привод использует определенное
	ACTUATOR_ACTION безопасное положение

4.3.12 Этапы операции для установки типа линеаризации – режим 22

Это позволяет модификации выбрать другой коэффициент калибровки.

Установите тип линеаризации следующим образом:

- установить режим 22;
- выберите тип линеаризации с помощью кнопок [↑] и [↓];
- Используйте [М] для переключения режимов.

Тип линеаризации	описывать
0	Без линеаризации
1	Пользовательская многоточечная линейная
	калибровка

4.3.13 Установка текущих шагов операции коррекции нижнего предела – режим 16

В режиме 1 6 можно установить нижнее предельное значение пользовательской двухточечной линейной калибровки выбранного номера канала.

Установите следующим образом:

 Выберите режим 16. Нижнее предельное значение двухточечной линейной калибровки пользователя для текущего установленного номера канала появится в области цифрового дисплея;

нижнего предельного значения в допустимом диапазоне ;

- Нажмите [Enter] для установки, если настройка выполнена успешно, будет отображаться «ОК», если не успешно, будет отображаться «Err».

4.3.14 Установка шагов операции корректировки текущего верхнего предела – режим 17

В режиме 1 7 можно установить верхнее предельное значение пользовательской двухточечной линейной калибровки выбранного номера канала.

Установите следующим образом:

MICROCYBER

 Выберите режим 16. Верхнее предельное значение двухточечной линейной калибровки пользователя для текущего установленного номера канала появится в области цифрового дисплея;

значения верхнего предела в допустимом диапазоне ;

- Нажмите [Enter] для установки, если настройка выполнена успешно, будет отображаться «ОК», если не успешно, будет отображаться «Err».

4.3.15 Этапы работы для настройки интерфейса ЖК-дисплея — режим 30

Выполните эту операцию, чтобы выбрать 8 интерфейсов ЖК-дисплея, которые можно настроить, и варианты: LCD 1-LCD8. Перед настройкой тип конфигурации необходимо изменить на LCD_L.Cм. 4.3.4 для метода конфигурации.

Настройте ЖК-интерфейс следующим образом:

- установить режим 30;

- Выберите настраиваемый интерфейс ЖК-дисплея с помощью кнопок [↑] и [↓];

- Используйте [М] для переключения режимов.

4.3.16 Операционные шаги для настройки переключателя дисплея ЖК-интерфейса – режим 31

Выполните эту операцию, чтобы настроить отображение соответствующего ЖК-интерфейса на включение или выключение. Этот жидкокристаллический интерфейс представляет собой единый жидкокристаллический интерфейс, сконфигурированный в режиме 30.

интерфейса LCD следующим образом :

- установить режим 31;
- Включите или выключите , используя [↑] и [↓] ;
- Используйте [М] для переключения режимов.

Переключатель	
дисплея ЖК -	описывать
интерфейса	
0	закрытие
1	включать

4.3.17 Этапы работы для настройки содержимого дисплея ЖК-дисплея — режим 11

Выполните эту операцию, чтобы настроить содержимое дисплея

соответствующего интерфейса ЖК-дисплея . Этот жидкокристаллический

интерфейс представляет собой единый жидкокристаллический интерфейс,

сконфигурированный в режиме 30.

ЖК-дисплее, следующим образом :

- установить режим 11;
- Выберите содержимое дисплея, используя [↑] и [↓];

- Используйте [М] для переключения режимов.

Варианты отображения	ЖК-дисплей	Логотип контента ,
содержимого на ЖК-	вспомогательная	отображаемый на
интерфейсе	информация	ЖК-интерфейсе
[1] АО 1 Уставка	CП1	1 c
[2] АО 1 Выходное	401	1 год
значение	AUT	
[3] Окончательное	Φ Ρ 1	1 ж
значение ТВ1	ΨΒΙ	
[4] АО 2 Уставка	CП2	2 c
[5] АО 2 Выходное	AO2	2a

значение		
[6] Окончательное	ተዋን	2f
значение ТВ2	ΨΒΖ	
[7] АО 3 Уставка	СП3	3 c
[8] АО 3 Выходное	402	3a
значение	AUS	
[9] Окончательное	ቀ ዋ2	Зf
значение ТВЗ	ΨΒΟ	
[1 0] АО 4 Уставка	СП4	4 c
[11] АО 4 Выходное	104	4a
значение	A04	
[12] Окончательное	A D4	4ф
значение ТВ4	Ψ Δ 4	

4.4 Восстановить данные счетчика до заводских значений

Восстановление данных счетчика до заводских значений по умолчанию является специальной операцией без функциональных кодов. После выполнения этой операции все данные конфигурации исчезнут, и будет восстановлено заводское состояние. Пожалуйста, используйте с осторожностью.

Восстановить данные прибора до заводских значений можно следующими способами:

- отключить питание прибора;
- Вставьте два магнитных стержня в отверстия «Ноль» и «Размах»

одновременно;

- Снова включите прибор, и в этот момент на ЖК-дисплее отобразится «RST?»;

 Если вы хотите восстановить заводские значения данных прибора, выньте два магнитных стержня, снова вставьте два магнитных стержня одновременно, подождите, пока индикатор выполнения не достигнет 100 %, снова выньте два

магнитных стержня и ЖК-дисплей отобразит «R_OK», что означает, что восстановление прошло успешно;

- Если вы не хотите восстанавливать данные прибора до заводских значений по умолчанию, выньте два магнитных стержня, подождите 5 секунд, после чего его можно будет использовать в обычном режиме.

Уведомление:

Если есть перемычка RST, она сразу восстановит заводское значение, и

«RST?» не появится.

Когда индикатор выполнения не достигает 100%, выньте два магнитных стержня, и операцию восстановления данных прибора до заводских значений также можно отменить.

Глава 5. F Конфигурация преобразователя F-типа

5.1 топологическая связь

Передатчик FF поддерживает различные методы подключения топологии сети, как показано на рис. 5.1 . 5.2 показано подключение к шине передатчика FF.Oба конца шины должны быть подключены с согласующими резисторами для обеспечения качества сигнала . Максимальная длина автобуса составляет 10 000 000 000 000 0001900m 000 и может быть увеличена до 10 км с использованием повторителей.

5.2 функциональный блок

Преобразователь FI105 реализует функциональные блоки стандарта FF, см. таблицу ниже. Метод конфигурации функционального блока см. в соответствующих документах по протоколу FF.

имя функционального	ОПИСЫВАТЬ
блока	
виэ	Блок ресурсов , используемый для описания характеристик полевых устройств, таких как имя устройства, производитель, серийный номер. Блоки ресурсов не имеют входных и выходных параметров . Устройство обычно имеет только один ресурсный блок
ТРД	Преобразование блоков, чтение данных аппаратного обеспечения датчика или запись полевых данных на соответствующее оборудование. Блок преобразования содержит такую информацию, как диапазон, тип датчика, линеаризация, данные ввода-вывода и т. д.
DSP	Блок отображения для настройки отображения информации на ЖК-дисплее
PID	PID, выполняет функцию PID-управления, а также имеет такие функции, как регулировка уставки, фильтрация параметров процесса (PV) и сигнализация, отслеживание выхода и т. д.
AO	аналогового вывода, используемый для передачи выходных данных в блок преобразования, воздействующий на физическое устройство.
ЛЛАГ	Функциональный блок опережения-запаздывания для управления с упреждением
ΡΑ	Пропорциональный функциональный блок - реализует пропорциональное управление двумя входными величинами.

5.3 Конфигурация функций

Интеллектуальный преобразователь поддерживает программное обеспечение для настройки FF, программное обеспечение для настройки NCS4000 от Zhongkebo Micro, конфигуратор NI-FBUS от компании NI, DeltaV от компании Rosemont и другое

распространенное программное обеспечение для настройки FF для отладки конфигурации. Нижеследующее в основном использует программное обеспечение для настройки FF от Zhongkebowei в качестве примера, чтобы представить метод настройки интеллектуального передатчика.

5.3.1 Среда конфигурации

1)ПК, операционная система Windows 2000 или Windows XP;

2)Шлюзовое устройство NCS3000, источник питания шины H1, согласователь терминалов H1;

3)ПО для настройки ФФ;

5.3.2 Двухточечная линейная калибровка

Двухточечную линейную калибровку можно выполнить с помощью параметров калибровки CAL_POINT_HI и CAL_POINT_LO блока преобразования. Шаги калибровки следующие:

1) Вручную задайте значение тока канала датчика через функциональный блок аналогового вывода, например, калибровка нижнего предела датчика может вводить 4 мА.

2) Измерьте фактический выходной ток с помощью стандартного амперметра и запишите это значение в параметр SENSOR_VALUE блока преобразования.

3) Измените параметр MODE блока преобразования на OOS и измените параметр SENSOR_CAL_METHOD на «Стандартная калибровка пользовательской настройки».

4) Запишите значение 4 мА в параметр CAL_POINT_LO, если запись прошла успешно, это означает, что калибровка нижнего предела прошла успешно. Обратите внимание, что значение калибровки должно находиться в пределах допустимого диапазона датчика, а значение калибровки и фактическое выходное значение не могут иметь больших отклонений, иначе калибровка не удастся.

5) Измените параметр MODE обратно на AUTO.

30

6) Калибровка верхнего предела выполняется в соответствии с описанным выше методом, и значение калибровки записывается в CAL_POINT_HI.

5.3.3 Многоточечная линейная калибровка

Изменяя параметры многоточечной калибровки CAL_CURVE_X и CAL_CURVE_Y блока, пользователь может самостоятельно выполнить вторичную калибровку линеаризации прибора. Шаги калибровки следующие:

1) Интеллектуальный преобразователь обеспечивает ввод 8 точек калибровки, то есть массив параметров CAL_CURVE_Y блока преобразования, и пользователь может последовательно записывать текущее значение для калибровки в массив. Например, при выполнении интерполяционной калибровки по трем точкам пользователь может выбрать в качестве точек калибровки 5 мА, 15 мА и 20 мА и записать эти три значения в массив CAL_CURVE_Y по очереди, как показано на рисунке 5.3.

 ● 計画 ● 計画			
11 Input Output Als	urm Tune Customi	zed	
参数名称	▲ 当前值	参数类型	
CAL_CURVE_X	0.000000	Float	
CAL_CURVE_Y			
CAL_CURVE_Y	5.000000	Float	
CAL_CURVE_Y	15.000000	Float	
CAL_CURVE_Y	20.000000	Float	
CAL_CURVE_Y	0.000000	Float	
	0	Visible String	

Рисунок 5.3 _ _ Конфигурация CAL_CURVE_Y

(2) Фактическое значение выходного тока измеряется стандартным амперметром, и значение записывается в массив CAL_CURVE_X. Например, запишите прочитанные значения 4,94, 14,96 и 19,9 в массив CAL_CURVE_X, как показано на рис. 5.4. На этом работа по калибровке закончена.

" MC-FI@DBFC20 : FI TRANS	SDUCER BLOCK 1 (T)	- • • • •
日本 日本			
All Input Output Ala	rm Tune Customi	ized	
参数名称	▲ 当前值	参数类型	
			^
CAL_CURVE_X	4.940000	Float	
CAL_CURVE_X	14.960000	Float	
CAL_CURVE_X	19.900000	Float	
CAL_CURVE_X	0.000000	Float	
CAL_CURVE_X	0.000000	Float	
	0.000000	Float	
CAL_CURVE_X	0.000000	Float	
CAL_CURVE_X	0.000000	Float	
CAL_CURVE_Y	5.000000	Float	
CAL_CURVE_Y	15.000000	Float	
CAL_CURVE_Y	20.000000	Float	
CAL_CURVE_Y	0.000000	Float	=
CAL_CURVE_Y	0.000000	Float	-
CAL_CURVE_Y	0.000000	Float	
CAL_CURVE_Y	0.000000	Float	
CAL_CURVE_Y	0.000000	Float	
ORDERING CODE	0	Visible Strina	*

Рисунок 5.4 _ _ Конфигурация параметра CAL_CURVE_X

(3)SENSOR_CAL_METHOD блока преобразования значение «специальная калибровка пользовательской настройки», чтобы интеллектуальный преобразователь использовал калиброванную кривую для вывода

5.3.4 Конфигурация ЖК-дисплея

По умолчанию на экране дисплея интеллектуального передатчика отображается значение параметра PRIMARY_VALUE блока преобразования канала 1, как показано на рисунке 4.5. Если пользователю необходимо отобразить информацию о других параметрах функционального блока, ее можно настроить следующим образом (Х означает 1, 2, 3, 4, всего имеется четыре группы параметров, и каждая группа может быть настроена по-разному. Интеллектуальный передатчик может отображать четыре группы различной информации о параметрах). Если конфигурация параметра неверна, на дисплее интеллектуального преобразователя будет отображаться только CONFIG ERR. Перед правильной настройкой сначала запишите режим блока индикации как OOS, а затем запишите его как AUTO после настройки параметров. Только таким образом конфигурация может вступить в силу. (1) BLOCK_TAG_X: отображаемого Этот параметр определяет имя

функционального блока. Например, если пользователь хочет отобразить определенный параметр АО1, он должен сначала настроить BLOCK_TAG_X и

определить значение параметра как AO 1. Примечание: параметр BLOCK_TAG_X требует, чтобы входной символ был 32 байта, и если он меньше 32 байт, его необходимо заполнить пробелами, иначе он не будет корректно отображаться. Например, вводимый выше AO 1 должен быть записан как « AO» 1"в программном обеспечении для настройки.

- (2) RELATIVE_INDEX_X: Этот параметр определяет индекс параметра отображаемого функционального блока. Например, чтобы отобразить выходное значение A O 1, определите этот параметр как 9 (индекс параметра OUT функционального блока A O 1 равен 9). Для индекса параметров функционального блока пользователи могут обратиться к протокольной части функционального блока FF fieldbus.
- (3) SUB_INDEX_X: Этот параметр определяет субиндекс параметра отображаемого функционального блока (если есть). Например, чтобы отобразить значение ЗНАЧЕНИЕ параметра OUT в функциональном блоке A O 1, вам необходимо определить RELATIVE_INDEX_X как 9 и определить SUB_INDEX_X как 2 (подиндекс элемента ЗНАЧЕНИЕ параметра OUT равен 2).
- (4) MNEMONIC_X: этот параметр представляет собой имя параметра отображения, которое может быть введено пользователем по желанию, а количество символов не превышает 16
- (5) DECI_PNT_NUMB_X: этот параметр определяет числовую точность отображения. Например, если вам нужно отобразить 3 цифры после запятой, определите значение как 3.
- (6) ACTIVE_X: Значение этого параметра FALSE или TRUE. После настройки других параметров запишите его как TRUE. Только таким образом можно активировать параметры, назначенные этой группе, и соответствующие параметры этой группы могут отображаться на экране дисплея информации об интеллектуальном передатчике.

MC-FI@DBFC20 : FI-DSP (DS	P)		• 🗙
計畫 計畫 mxx mx 「自动定时更新」 5 → 秒			
All Input Output Alarm	Tune Customized		
参数名称	▲ 当前值	参数类型	
ST_REV	9	UINT (2 Byte	~
TAG_DESC		Octet String	
STRATEGY	1	UINT (2 Byte	
ALERT_KEY	1	UINT (1 Byte)	
B MODE_BLK			
BLOCK_ERR	(0)	16 Bit Enum	
BLOCK_TAG_1	A01	Visible String	-
RELATIVE_INDEX_1	9	UINT (2 Byte	
SUB_INDEX_1	2	UINT (1 Byte)	
MNEMONIC_1	OUT1	Octet String	
INC_DEC_1	0.000000	Float	
DECI_PNT_NUMB_1	2	UINT (1 Byte)	
ACCESS_1	en Monitoring (0)	Enum (UINT	
ALPHA_NUMB_1	en Alpha (0)	Enum (UINT	
ACTIVE_1	en True (1)	Enum (UINT	
BLOCK_TAG_2	FI TRANSDUCER BLOCK 2	Visible String	
RELATIVE_INDEX_2	13	UINT (2 Byte	
SUB_INDEX_2	2	UINT (1 Byte)	
MNEMONIC_2	OUT2	Octet String	
INC_DEC_2	0.000000	Float	
DECI_PNT_NUMB_2	2	UINT (1 Byte)	
ACCESS_2	en Monitoring (0)	Enum (UINT	
ALDHA NUMB 2	lenlAlpha (0)	Fnum / LIINT	*

Рисунок 5.5 _ _ Отображает конфигурацию параметров блока

5.4 Конфигурация перемычек

Преобразователь FI105 имеет 3 аппаратных перемычки, как показано на рис.

4.6 .

SIM : перемычка имитации , которая может реализовать функцию имитации.

WP : перемычка защиты от записи , любая операция записи в преобразователь FI105 будет отклонена, что может предотвратить произвольное изменение данных прибора.

RST : сбросить перемычку и восстановить заводские данные преобразователя . Во-первых, передатчик выключен , вставьте перемычку в положение RST , передатчик включен, и передатчик возвращается в заводское состояние.

Рисунок 5.6 _ _ Аппаратная перемычка преобразователя FI105

Глава 6. Конфигурация преобразователя типа Р

6.1 топологическая связь

сети PROFIBUS PA может иметь различную структуру, как показано на рис. 6.1. Подключение усилителя к шине показано на Рисунке 6.2 Оба конца шины должны быть соединены с оконечными резисторами для обеспечения качества сигнала шины. Максимальная длина шины составляет 1900 米, которую можно увеличить с помощью повторителей 10 километр

MICROCYBER

Г

6.2 функциональный блок

FI 05 типа PA реализует стандартные функциональные блоки PA, см. таблицу ниже. Метод конфигурации функционального блока см. в профиле PROFIBUS PA.

имя функционального блока	Описание функционального блока	
	Физический функциональный блок (РВ). Описывает уникальную	
Физический блок	информацию об оборудовании, а также идентификационную и	
	диагностическую информацию об устройстве, включая тег	
	устройства, версию программного обеспечения, версию	
	оборудования, дату установки и т. д.	
	Блок преобразования 1 (ТБ 1). Отдельный функциональный блок	
	от входных и выходных характеристик прибора, он в основном	
преооразователя т	выполняет функции калибровки и линеаризации входных и	
	выходных данных	
	Блок преобразования 2 (ТБ 2). Отдельный функциональный блок	
F0	от входных и выходных характеристик прибора, он в основном	
Блок преобразователя 2	выполняет функции калибровки и линеаризации входных и	
	выходных данных	
	Блок преобразования 3 (ТБ 3). Отдельный функциональный блок	
	от входных и выходных характеристик прибора, он в основном	
лок преобразователя з	выполняет функции калибровки и линеаризации входных и	
	выходных данных	
	Блок преобразования 4 (ТБ 4). Отдельный функциональный блок	
Блок преобразователя 4	от входных и выходных характеристик прибора, он в основном	
	выполняет функции калибровки и линеаризации входных и	
	выходных данных	
Блок преобразователя 5	Блок преобразования 5 (ТБ 5). В основном завершить функцию	
	конфигурации ЖК-дисплея	
	аналогового выхода (А О 1). Используется для передачи	
аналогового выхода 1	выходных данных в блок преобразования, воздействующий на	

	физическое устройство.
	аналогового выхода (А О 2). Используется для передачи
аналогового выхода 2	выходных данных в блок преобразования, воздействующий на
	физическое устройство.
	аналогового выхода (А О 3). Используется для передачи
Блок аналогового выхода 3	выходных данных в блок преобразования, воздействующий на
	физическое устройство.
	аналогового выхода (А О 4). Используется для передачи
аналогового выхода 4	выходных данных в блок преобразования, воздействующий на
	физическое устройство.

6.3 Конфигурация функций

FI 105 типа PA соответствует профилю PROFIUBS PA версии 3.02. Программное обеспечение для управления устройством Simatic PDM от Siemens можно использовать для считывания и записи параметров функционального блока преобразователя, а программное обеспечение для конфигурирования Step7 от Siemens также можно использовать для настройки преобразователя.

6.3.1 Среда конфигурации

- 1) ПК, операционная система Windows 2000 или Windows XP;
- 2) Программное обеспечение для настройки Siemens Step7, программное обеспечение для управления оборудованием Siemens PDM ;
- 3) соединитель DP/PA coupler или компоновщик ;
- Мастер-станция типа 1, например, ПЛК, мастер-станция типа 2, например карта CP5611;
- 5) Сопоставитель терминалов РА;
- 6) стандартной температуры.

6.3.2 Конфигурация параметра блока преобразования

Блок преобразования отделяет функциональные блоки от физических проприетарных устройств ввода-вывода, таких как датчики и исполнительные механизмы, и зависит от реализации производителей устройств для доступа к устройствам ввода-вывода или управления ими. Через доступ к устройству ввода-вывода блок преобразования может получать входные данные или устанавливать выходные данные. Как правило, блок преобразования имеет такие функции, как линеаризация, характеризация, температурная компенсация, управление и обмен данными.

Параметры блока преобразования показаны в таблице ниже:

параметр	Функциональное описание			
FINAL_VALUE	Уставка из функционального блока АО			
	Содержит диапазон, единицу измерения и			
PINAL_VALUE_RANGE	другую информацию FINAL_VALUE.			
CAL_POINT_HI	Калибровка высокая			
CAL_POINT_LO	Калибровка Низкий			
CAL_MIN_SPAN	Минимальный диапазон калибровки			
CAL_UNIT	блок калибровки			
ACT_SN	Серийный номер привода			
CAL_LOC	Место обслуживания оборудования			
	Дата технического обслуживания			
CAL_DATE	оборудования			
SENSOR_CAL_WHO	обслуживающий персонал оборудования			
	Возвращает заданное значение, которое			
RETORN_VALUE	может быть калиброванным значением.			
SENSOR_VALUE	необработанное значение датчика			
LIN_TYPE	Тип линеаризации			
КАЛКОНТРОЛЬ	Калибровочная метка			
TAB_ENTRY	Текущий индекс выбора калибровочной			

	таблицы.
	Калибровка значения текущего выбора в
TAB_X_Y_VALUE	таблице (х, у)
	Калибровочная таблица минимального
IAD_WIIN_NUMBER	количества точек.
	Калибровочная таблица максимальное
TAD_WAA_NOWBER	количество точек.
TAB_OP_CODE	Метод работы с калибровочным столом.
TAB_STATUS	Статус работы калибровочного стола.
	Фактическое количество точек для
TAB_ACTUAL_NUMBER	калибровочной таблицы.
	Безопасное положение для обесточенного
ПРИВОД_ДЕИСТВИЕ	привода .

6.3.3 Конфигурация циклической передачи данных PROFIBUS

Циклическая передача данных PROFIBUS DP относится к обмену входными и выходными данными между ведущей станцией класса 1 и ведомой станцией в форме опроса ведущий-ведомый, а метод связи не требует установления соединения. В каждом периоде цикла ведущая станция класса 1 активно отправляет запросы на обмен данными, а ведомая станция пассивно отвечает на запрос ведущей станции. Циклическая передача данных в основном используется в конфигурации оборудования ведомой станции и ведущей станции ПЛК.Посредством циклической передачи данных ПЛК ведущей станции может получать входные данные ведомой станции или выводить выходные данные на ведомую станцию в режиме реального времени.

Конфигурация циклической передачи данных преобразователя FI 105 типа PA в основном такая же, как и у ведомой станции PROFIBUS DP, за исключением того, что между шиной PA и шиной DP необходимо использовать соединитель или компоновщик.

FI 105 типа PA поступают из входных параметров функционального блока A O в оборудовании или из заданного значения оборудования главной станции . Для циклической связи преобразователь поддерживает различные идентификаторы, см. описание файла GSD . Можно использовать Step7 от Siemens для выполнения конфигурации передачи данных цикла в PROFIBUS PA.

Ниже приведен пример использования Siemens Step7 для настройки РА-передатчика.

SIMATIC Manager, следуйте подсказкам, чтобы выбрать мастер-станцию ПЛК и создать новый проект, см. Рисунок 6.3

Рисунок 6.3 _ Выберите мастер-станцию ПЛК и создайте новый проект.

Дважды щелкните «Оборудование», чтобы открыть программную и аппаратную конфигурацию HW Config. Выберите Install GSD в меню Option, чтобы установить файл GSD передатчика PA, см. Рисунок 6.4.

02PROF:	IBUS\Profibus\	Microcyber	\Microcyber DDL GSD PDM6\FI105	Browse .
le	Release	Version	Languages	
BOC46.	gsd		Default	
-FI105-	-P			
-FI105-	-P			

Рисунок 6.4 __ Установите GSD-файл

После успешной установки файла GSD только что установленное устройство PA будет указано в категории PROFIBUS-PA в списке устройств в правой части программного обеспечения HW Config. Выберите его с помощью мыши и перетащите на шину PROFIBS DP, см. Рисунок 6.5.

발한 RF Config - [STEATIC 300 (Configuration) PA FI105] By Station Rdit Insert ELC View Options Yindow Help	- a ×
D 2 % 6 6 6 7 7 10	Zind: Image: Constraint of the second seco
SIMATIC 500 S. Beignation Press Fit log to Halp.	PEOFIDUS-DP slaves for SIMATIC S7, W7, and C7 (distributed rack)

Рисунок 6.5 _ _ Перетащите устройство РА на шину PROFIBUS DP.

Выберите «Загрузить» в меню ПЛК, чтобы загрузить информацию о конфигурации на мастер-станцию ПЛК. Таким образом, конфигурация циклической передачи данных РА-инструмента и главной станции завершена, как показано на рис. 6.6.

B HV Config - [SIMA	TC 300 (Configuration) PA	FT105]		
III Station Edit Insert	<u>PLC</u> ¥iew Options Window <u>H</u> elp			_ 8 ×
	Download Upload	Ctrl+L		
🚍 (0) UR	Download Module Identification		<u> </u>	미치
1 PS 307 24	Upload Module Identification to PG		Eind:	nt ni
2 CPU 315- 12 DP	Eaulty Modules		r system (1) Erofil Standard	<u>.</u>
3	Module Information	Ctrl+D	E W PROFIBUS-PA	^
4	Operating Mode	Ctrl+I	+ Actuators	
2	Clear/Reset		+ Discrete Input	
7	Set Time of Day		💌 🧰 Discrete Output	
8	Monitor/Modify		- indicator	
9 10	Updatg Firmware		Remote I/O	
L	Save Degice Name to Memory Card		Endress+Hauser	
	Ethernet		Converter	
	PROFIBUS		Universal module	
	Save Service Data		ENPTY_MODULE	
<			ST CETERTURYLANDOR U	~
SINATIC 300			PROFIBUS-DP slaves for SIMATIC S7, M7, (distributed rack)	and C7 £
S Designation				
Loads the current station i	nto the load memory of the current mod	ale.		

Рисунок 6.6 _ _ Загрузить информацию о конфигурации в ПЛК

6.3.4 Конфигурация ациклической передачи данных PROFIBUS

Ациклическая передача данных PROFIBUS DP относится к передаче данных, ориентированной на установление соединения, между двумя типами ведущих и подчиненных станций. Эта передача данных происходит в ациклическом цикле шины, не влияя на циклическую передачу данных. Ациклические данные в основном представляют собой параметры функционального блока PA, а также

идентификационную и диагностическую информацию об оборудовании. Ациклическая передача данных в основном используется для управления, диагностики, идентификации, настройки и обслуживания оборудования громкой связи.

Конфигурацию ациклической передачи данных прибора РА можно выполнить с помощью программного обеспечения для управления оборудованием SIMATIC PDM от Siemens.

Ниже приведен пример использования SIMATIC PDM для настройки ациклической связи преобразователя FI 105 типа PA.

Откройте программное обеспечение каталога Manage Device, прикрепленное к SIMATIC PDM, выберите файл EDD FI105 и импортируйте его, см. рис. 6.7.

<mark>ਤ</mark> SINATIC PDN Nana	nge Device Catalog		
Source: C:\Documents	and Settings\Admin\桌面\FI105	<u>B</u> rowse	OK
<u>D</u> evice type:			Abort
Microcyber PROFIBUS PA Converter NCS-FIII	15		Help
			So <u>r</u> t
			Select all
			D <u>e</u> select all
Information on the Devi Attribute	ce type: Value WC-RTION	_	
Description	NCS-FI105 Fieldbus to Current Converter		
Manufacturer	Microcyber		
Communication	PROFIBUS PA		
Catalogposition	Converter		
OrderNumber	NCS-FT105 P***	×	
<		>	

прикрепленное к SIMATIC PDM, и выберите Start для сканирования шины DP в меню

Scan, как показано на рис. 6.8

開 无标题 -	SIMATIC P	D II LifeLi	st					
<u>F</u> ile <u>D</u> evice	<u>Scan</u> <u>V</u> iew	Help						
	Options							
Address / TAG	Start	F5		Device status	De	evice type	Manu	facturer
	Cancel							
	Diagnosti	es						
Start scan						0 %	9	0 //

Рисунок 6.8 _ _ Начать LifeList

шине DP, и одновременно отобразится идентификационный номер производителя и некоторая диагностическая информация об устройстве, как показано на рисунке 6.9.

无标题 - SIMATIC PDM LifeList			
<u>F</u> ile <u>D</u> evice <u>S</u> can <u>V</u> iew <u>H</u> elp			
Address / TAG	Device status	Device type	Manufacturer
PROFIBUS DP	<pre></pre>		
👤 O: MICROSOF-AA5686 Administrator		PG/PC	(
- 125: NCS_FI105	Slave is not ready for data exchange; Slave must be assi	NCS_FI105	ID = 0016CH
		0.9/	0.0

Рисунок 6.9 _ Сканировать шину DP для получения списка устройств PA После выбора типа устройства нажмите OK, и настройка ациклической передачи данных завершена. С помощью функций загрузки и выгрузки программного обеспечения PDM можно считывать и записывать параметры инструмента PA, как показано на рис. 6.10.

- B. Networks	Parameter	Value	Unit	Status
E S MICROSOF-AA5686	NCS_FI105 (Specialist)			
- ROFIEDS DP	» Device Identification			
E E ROSTINO	» » Manufacturer Info			
	Manufacturer	Microcyber Inc.	In	itial value
	Product designation	NCS_FI105	In	itial value
	» » Set Block Tag			
	Physical Tag	NCS_FI105	С	hanged
	Transducer 1 Tag		In	itial value
	Transducer 2 Tag		Ir	itial value
	Transducer 3 Tag		In	itial value
	Transducer 4 Tag		In	itial value
	Analog Output 1 Tag		Ir	itial value
	Analog Output 2 Tag		In	itial value
	Analog Output 3 Tag		In	itial value
	Analog Output 4 Tag		In	itial value
	» » Descriptor, Messa	ge and Date		
	Descriptor		Ir	itial value
	Message		In	itial value
	Installation Date	2008-01-01	In	itial value
	» » Serial Numbers			
	Device Serial Num	0	In	itial value
	» » Device Revisions			
	<			>

Рисунок 6.10 _ _ Управление устройствами с помощью программного обеспечения PDM

6.3.5 Функция онлайн и оффлайн конфигурации

FI 105 типа PA реализует стандартный функциональный блок PA, а функция онлайни офлайн-конфигурации реализует функцию раздельной настройки параметров функционального блока. Через программное обеспечение PDM после настройки

выберите пункт Device -> Online Configuration или выберите пункт Device -> Offline Configuration, чтобы записать параметры функционального блока.

6.3.6 Двухточечная калибровка линеаризации

FI 105 типа PA калибруются строго перед отправкой с завода и, как правило, не нуждаются в калибровке пользователем. Пользователи также могут использовать меню «Калибровка» для выполнения двухточечной калибровки линеаризации. Этапы операции следующие:

- Обеспечьте регулируемый источник питания 24 В постоянного тока для калибруемого канала и последовательно подключите высокоточный мультиметр.
- Откройте программное обеспечение PDM, выберите пункт Device -> Calibration -> Transducer->TRD-X Lower/Upper и откройте страницу калибровки нижней точки FI 105. (Х: выберите 1-4 в соответствии с фактическим калибруемым каналом)
- 3) Измените режим функционального блока АО на РУЧНОЙ. Выполните функцию нижней точки калибровки. Введите значение калибровки нижней точки, например: 4 мА. Считайте значение высокоточного мультиметра, введите его и завершите операцию калибровки нижней точки после подтверждения.
- 4) Измените режим функционального блока АО на РУЧНОЙ. Выполните функцию верхней точки калибровки. Введите значение калибровки верхней точки, например: 20 мА. Считайте значение высокоточного мультиметра, введите его и завершите операцию калибровки верхней точки после подтверждения.
- 5) После калибровки измените режим функционального блока аналогового вывода обратно на AUTO.

Примечание: При использовании Device -> Master Reset процессор прибора будет сброшен, что приведет к временному прерыванию связи Это нормальное явление, просто подключитесь повторно.

6.3.7 Многоточечная калибровка линеаризации

Учитывая точность и погрешность датчика, преобразователь FI 105 также обеспечивает функцию многоточечной калибровки линеаризации. Обеспечить 2-16 точек калибровки, которые могут быть произвольно выбраны в соответствии с требованиями.

Выберите Устройство->Автономная конфигурация->Преобразователь , выберите функцию «Пользовательский (Таблица)» для Типа линеаризации соответствующего блока преобразования и в это время примените функцию многоточечной линейной калибровки. Пользователи могут добавлять данные нескольких точек калибровки в пользовательскую таблицу в соответствии с требованиями , см. REF _Ref27137888 \h puc. 6.11 . Это диалоговое окно предоставляет функции чтения и записи таблицы. При написании таблицы необходимо сначала ввести количество точек калибровки, которые необходимо записать, и таким образом выбрать количество точек калибровки.

Transducer 3 Transducer 1	User Table3 User Table1	Transducer 4 Transducer 2	User Table4 User Table2
K1: 🚺	Y1 0	Read ta	ble
K2: 5	Y2 5	VVrite Ta	ble
(3: 10	Y3: 10		
K4: 15	Y4: 15		
<5: 20	Y5: 20	1	6
K6: 25	Y6: 25		
K7: 30	Y7: 30		
<8: 40	Y8: 40		
kg: 50	Yg 50		
<10: 60	Y10 60		
K11: 70	Y11: 70		
K12: 80	Y12: 80		
K1 3: 85	Y13: 85		
K14: 90	Y14: 90		
×15: 95	Y15: 95		
K16: 100	Y16: 100		

Рисунок 6.11 _ _ Пользовательская многоточечная калибровка линеаризации

6.3.8 Конфигурация содержимого ЖК-монитора

Для более гибкого мониторинга значения процесса преобразователь FI105 обеспечивает функцию конфигурации содержимого мониторинга ЖК-дисплея. Обеспечивает 8 жидкокристаллических интерфейсов, которые могут выбирать значение процесса любого из 4 контролируемых каналов.

Выберите Устройство- >Онлайн-конфигурация->Преобразователь 5, выберите переменную для мониторинга и количество десятичных разрядов отображаемой переменной в интерфейсе ЖК-дисплея, которое необходимо настроить в диалоговом окне, и настройте интерфейс ЖК-дисплея, чтобы он был включен или выключен, как показано на рисунке 6.12.

LCD5-Settings LCD1-Settings	LCD6-Settings	LCD7-Settings	LCD8-Setting
LCD1-Settings – Set Lcd Display F Select Lcd Displa Select Lcd Displa	Enable P ay Type CH ay Decimal Point 5	↓ 11_SP ↓	Transfer

Рисунок 6.12 Интерфейс настройки ЖК – мониторинга

6.4 Конфигурация перемычек

типа РА имеет 3 аппаратных перемычки, 2 из которых можно использовать в настоящее время, как показано на рис. 6.13, перемычка SIM не используется.

RST : перемычка сброса, используемая для восстановления заводских данных прибора . Процесс работы следующий: сначала отключите питание счетчика, затем установите перемычку в положение RST, затем снова включите счетчик, и счетчик восстановит данные до заводского состояния .

Примечание. После использования перемычки сброса для восстановления заводских значений измерителя снова отключите питание измерителя, вытащите перемычку на RST и затем используйте измеритель в обычном режиме. В противном случае, если на RST постоянно установлена перемычка, при следующем перезапуске прибора все данные снова будут восстановлены до заводских значений, а информация о конфигурации до сбоя питания будет потеряна.

Рисунок 6.13 _ _ Аппаратная перемычка передатчика типа PA WP : перемычка защиты от записи, реализация аппаратной функции защиты от записи. Когда перемычка установлена в положение WP , любая операция записи в преобразователь PA типа FI 105 будет отклонена, что предотвращает произвольное изменение данных прибора.

Глава 7. Поддерживать

Феномен	мера
	Подключение передатчика
	Проверьте подключение кабеля шины
	Проверьте полярность питания
	Проверьте экран кабеля шины для одноточечного заземления.
	мощность шины
	На стороне передатчика выходное напряжение источника питания шины
	должно быть в пределах от 9 до 32 В.
	Кроме того, шум и пульсации шины должны соответствовать следующим
	требованиям:
	1) Размах шума 16 мВ, 7~39 кГц;
	2) Размах шума 2 В, 47~63 Гц, неискробезопасная среда
	3) Размах шума 0,2 В, 47~63 Гц, искробезопасная среда
	4) Размах шума 1,6 В, 3,9–125 МГц.
не могу общаться	интернет-соединение
	Проверить правильность топологии сети
	Проверьте контактный разъем и проводку
	Проверить длину магистральных и ответвительных линий
	адресный конфликт
	Передатчик обычно имеет случайный адрес, когда он покидает завод,
	поэтому старайтесь избегать конфликтов адресов. Однако конфликты
	адресов все еще могут возникать в сегменте сети. Когда возникает
	конфликт, иногда конфликтующее устройство подключается к сети с
	временным адресом.В это время вам нужно только сбросить адрес
	устройства. Иногда он вообще не сможет подключиться к сети, вы можете
	сначала отключить конфликтующие устройства, а затем включить питание
	одно за другим и изменить адрес нового устройства на неконфликтующий
	адрес. Последовательно включайте и изменяйте адреса, пока все не

	будут подключены к сети.
	Отказ передатчика
	Замените тест другим преобразователем
	Проблемы с подключением передатчика
	Проверьте на наличие короткого замыкания, обрыва цепи и т. д.
	мощность нагрузки
ошибка вывода	Проверьте напряжение источника питания нагрузки, оно должно быть в
	пределах 9 ~ 32 В постоянного тока , и оно должно соответствовать:
	напряжению источника питания ≥ (выходной ток * сопротивление нагрузки
	+ 5 В постоянного тока)
	настройки программного обеспечения
	Проверьте конфигурацию параметров функционального блока.
	Отказ передатчика
	Замените тест другим преобразователем

Глава 8. Технические характеристики

8.1 Основные параметры

выходной сигнал	4 ~ 20 мА
количество	4 канала
каналов	
Текущий режим	Выход коллектора NPN
вывода	
мощность шины	от 9 до 32 В постоянного тока Потребляемый ток (статический): ≤ 14 мА
сигнал шины	Скорость передачи 31,25 Кбит /с, текущий режим
изоляция	Между клеммой и корпусом : 500 В (707 В постоянного тока)
показывать	модуль жидкокристаллического дисплея
Рабочая	-40°С~ 85°С(без отображения)
Температура	-30°С∼ 70°С(показано)
диапазон	0 %~100% относительной влажности
влажности	
Время начала	≤5 секунд
степень защиты	IP65
эффект вибрации	Любая ось 0 ~ 200 Гц, погрешность составляет ± 0,05% / г от
	максимального диапазона.
Электромагнитная	Соответствует ГБ/Т 18268-20 10
совместимость	

8.2 технические индикаторы

точность	Нормальная температура: < 0,05 % - 40 °С ~+ 85°С: < 0,3 %
максимальная	1350 Om (питацию 32 P)
нагрузка	1550 Ом (питание 52 D)
мощность	5 ~ 32 В постоянного тока Примечание: напряжение питания ≥ (выходной
нагрузки	ток * сопротивление нагрузки + 5 В постоянного тока)
температурный	
эффект	

8.3 физические свойства

Электрические	1/2-14 N PT внутренняя резьба
соединения	
Конструкционны	Электронный корпус: алюминиевый сплав с низким содержанием меди;
е материалы	Покрытие: полиэфирно-эпоксидная смола.
масса	1.1kg

MICROCYBER

MICROCYBER CORPORATION

Microcyber Corporation Http://www.microcyber.cn/en Add: 17-8 Wensu Street, Hunnan New District, Shenyang, China 110179 Tel: 0086-24-31217278 / 31217280 Fax: 0086-24-31217293 Email: sales@microcyber.cn